

VERS UNE ASSIMILATION DES DONNÉES DE DEFORMATION EN VOLCANOLOGIE

MG Bato^{1,2}, V Pinel², Y Yan³

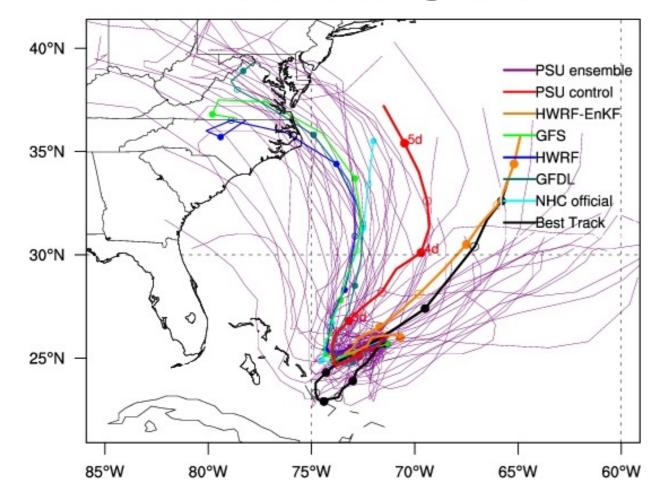
bato@jpl.nasa.gov

[1]NASA - Jet Propulsion Laboratory, California Institute of Technology, California, USA, [2]ISTerre, Université Savoie Mont Blanc, Chambéry, France, [3]LISTIC, Université Savoie Mont Blanc, Chambéry-Annecy, France

© 2018 California Institute of Technology. Government sponsorship acknowledged.

OVERVIEW: WHAT IS DATA ASSIMILATION (DA)?

Track Forecasts: al11@2015093000



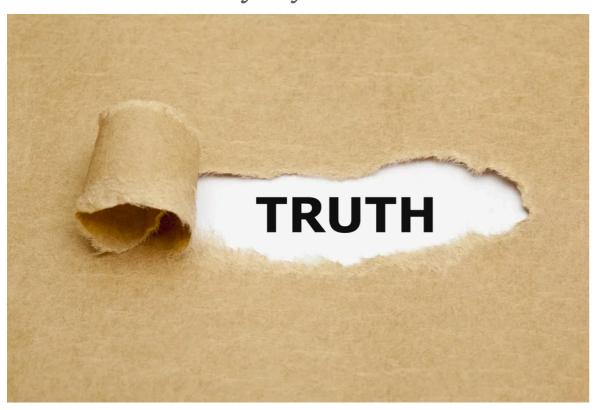
Example of data assimilation: Forecasting the path of Hurricane Joacquin

Data assimilation is a time-stepping process that combines models, observations and *a priori* information based on error statistics to predict the state of a dynamical system

- ☑Common approach used in numerical weather prediction (NWP)
- ☑Gained popularity in other fields of geosciences:
 - vegetation and soil moisture
 - natural resource exploration
 - geomagnetism

OVERVIEW: BASIC CONCEPT OF DATA ASSIMILATION

Everyone wants the "truth", but the truth is, we can only infer the "truth"



• Models (*M*) are incorporated with errors (*q*)

M: Model operator

$$\mathbf{Z}_{t+1}^f = \mathcal{M}(x_t^a) + q$$

• Observations (D) are not free of noise (ϵ)

H: Observation operator; link between x and D

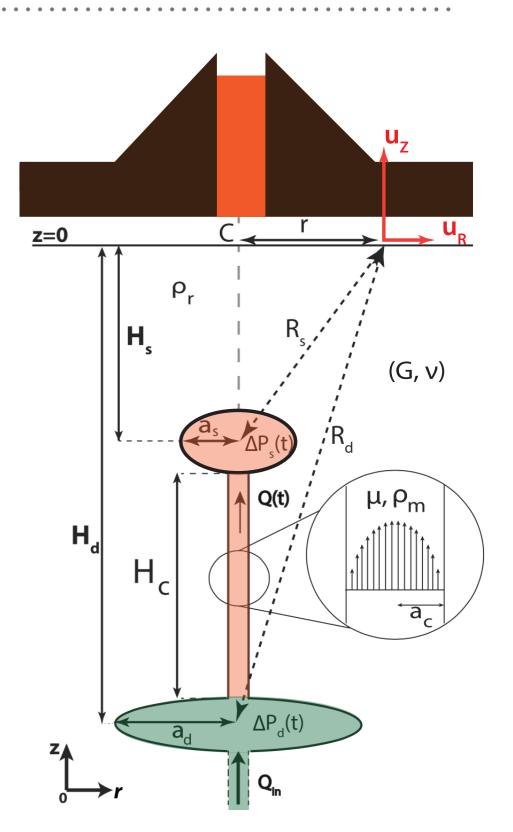
$$\square D_{t+1} = \mathcal{H}(x_{t+1}^f) + \epsilon$$

 Efficient model + data technique

*f: forecast
a: analysis

- Observations / data
 - ☑ Deformation data (e.g. InSAR/ GNSS time-series)
- Dynamical model
 - Two-chamber model (Reverso et. al. 2014)
- A priori information (Gaussian PDF)

- Observations / data
 - ☑ Deformation data (e.g. InSAR/GNSS time-series)
- Dynamical model
 - ☑ Two-chamber model (Reverso et. al. 2014)
- A priori information (Gaussian PDF)



Model description:

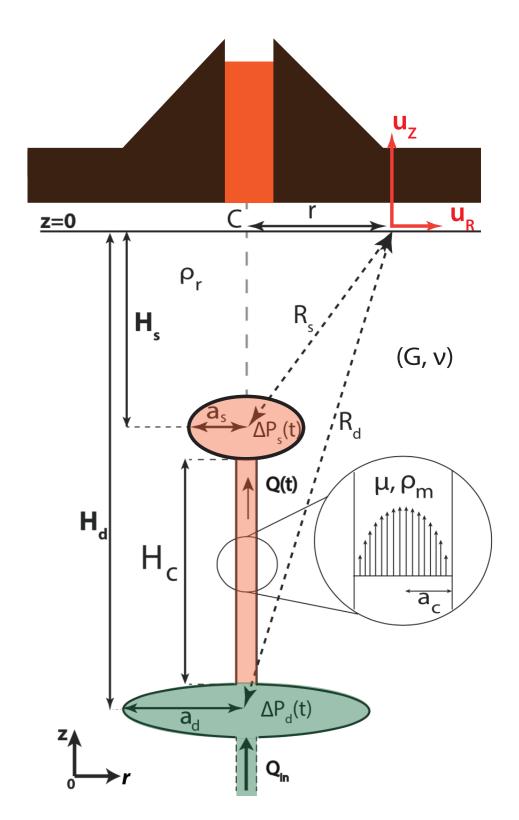
- Homogeneous, isotropic, elastic halfspace
- Two reservoirs connected by a hydraulic pipe
- Deeper reservoir is fed by a magma inflow, Q_{in}

Several volcanoes are evidenced to have multiple reservoir systems

Data / observations:

Uz: Vertical displacement

U_R: Radial displacement



Evolution of overpressures: M

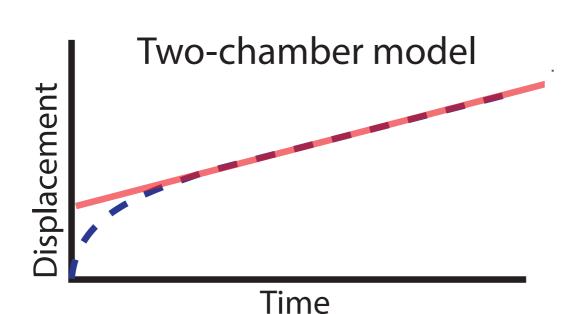
$$\frac{\Delta P_{s_{t_{i+1}}} - \Delta P_{s_{t_i}}}{t_{i+1} - t_i} = \frac{Ga_c^4}{8\mu\gamma_s H_c a_s^3} ((\rho_r - \rho_m)gH_c + \Delta P_{dt_i} - \Delta P_{s_{t_i}})$$

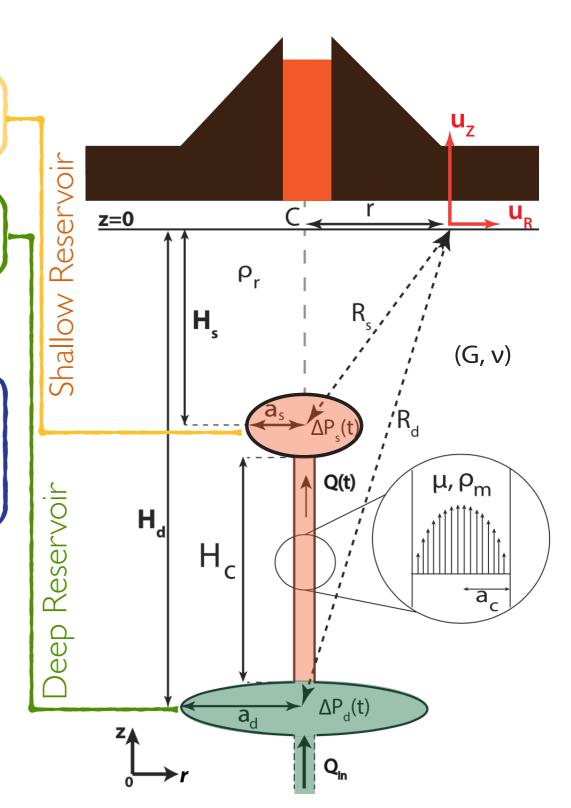
$$\frac{\Delta P_{d_{t_{i+1}}} - \Delta P_{d_{t_i}}}{t_{i+1} - t_i} = \frac{G}{\gamma_d \pi a_d^3} Q_{in} - \frac{\gamma_s a_s^3}{\gamma_d a_d^3} \frac{\Delta P_{s_{t_{i+1}}} - \Delta P_{s_{t_i}}}{t_{i+1} - t_i}$$

Overpressure-Displacement Data Relationship: H

$$u_{R}(r, t_{i}) = \frac{(1-v)}{G} r \left(\alpha_{s} \frac{a_{s}^{3}}{R_{s}^{3}} \Delta P s_{t_{i}} + \alpha_{d} \frac{a_{d}^{3}}{R_{d}^{3}} \Delta P_{d_{t_{i}}} \right)$$

$$u_{z}(r, t_{i}) = \frac{(1-v)}{G} \left(H_{s} \alpha_{s} \frac{a_{s}^{3}}{R_{s}^{3}} \Delta P s_{t_{i}} + H_{d} \alpha_{d} \frac{a_{d}^{3}}{R_{d}^{3}} \Delta P_{d_{t_{i}}} \right)$$



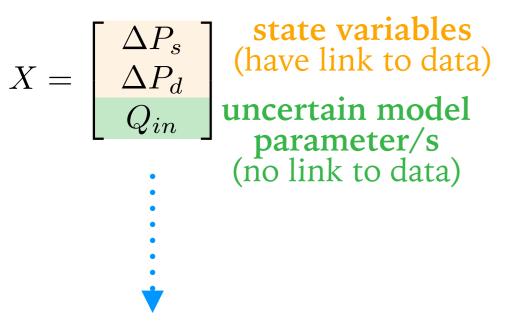


modified after Reverso et. al. 2014

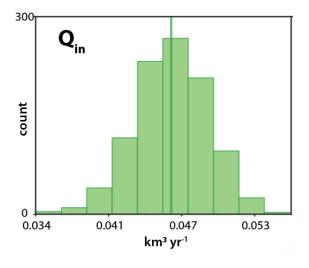
- Observations / data
 - ☑ Deformation data (e.g. InSAR/GNSS time-series)
- O Dynamical model
 - Two-chamber model (Reverso et. al. 2014)
- A priori information (Gaussian PDF)

Initial Guess?

OVERVIEW: SEQUENTIAL DATA ASSIMILATION

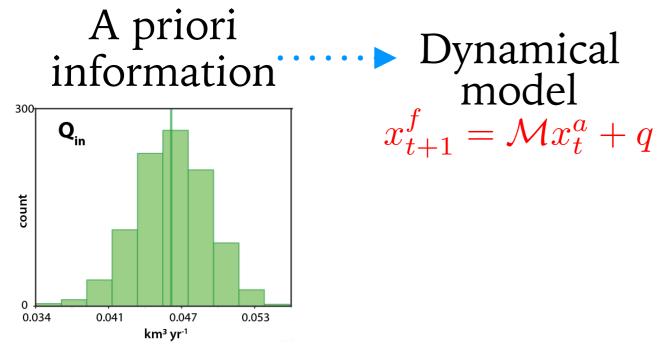


A priori information



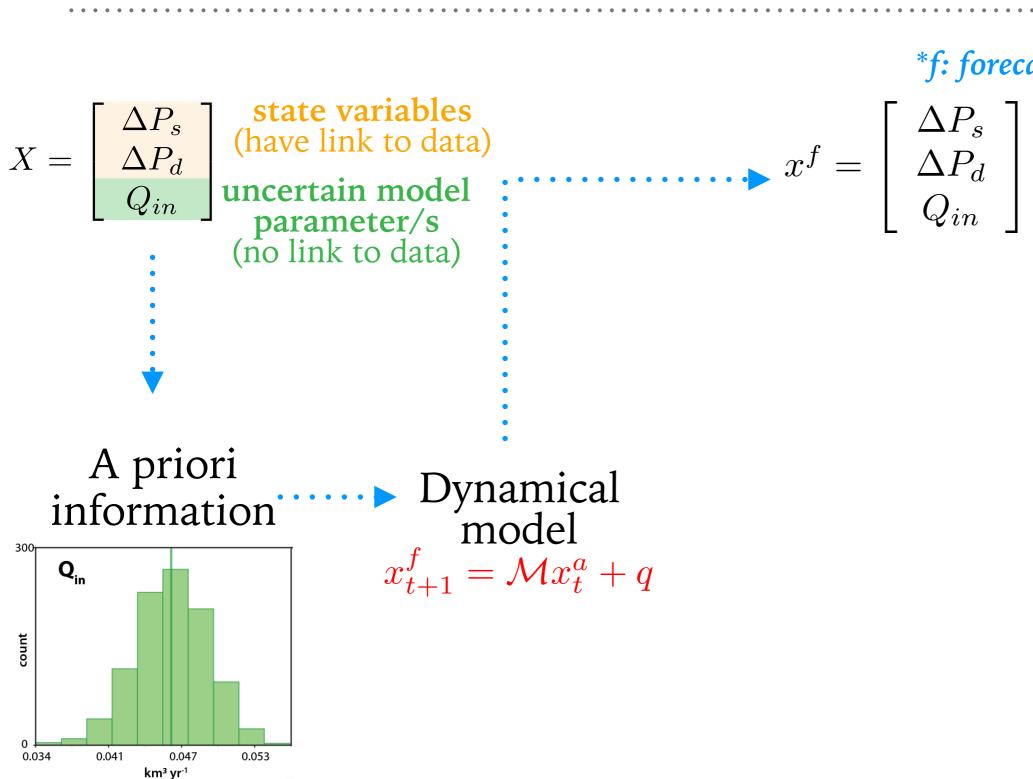
OVERVIEW: SEQUENTIAL DATA ASSIMILATION

```
X = \begin{bmatrix} \Delta P_s \\ \Delta P_d \\ Q_{in} \end{bmatrix} state variables (have link to data) uncertain model parameter/s (no link to data)
```



*f: forecast step

OVERVIEW: SEQUENTIAL DATA ASSIMILATION



OVERVIEW: SEQUENTIAL DATA ASSIMILATION

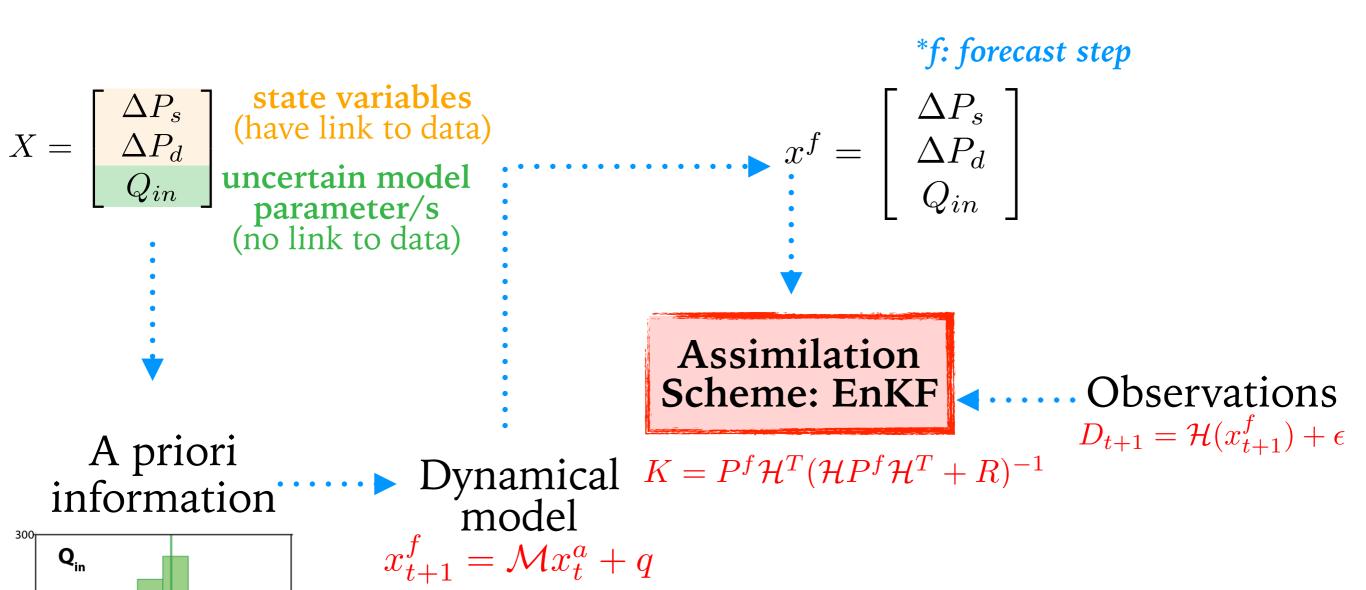
0.041

0.034

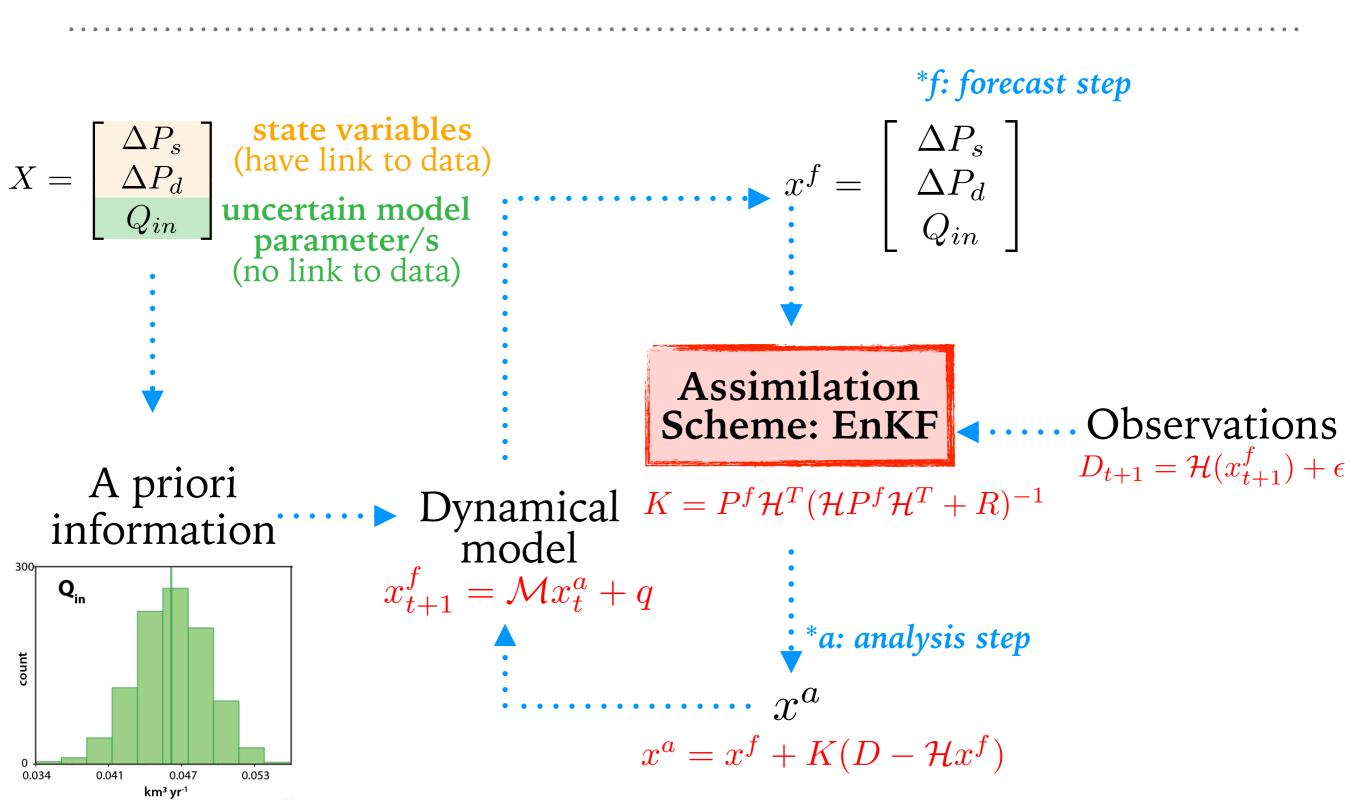
0.047

km³ yr-1

0.053



OVERVIEW: SEQUENTIAL DATA ASSIMILATION

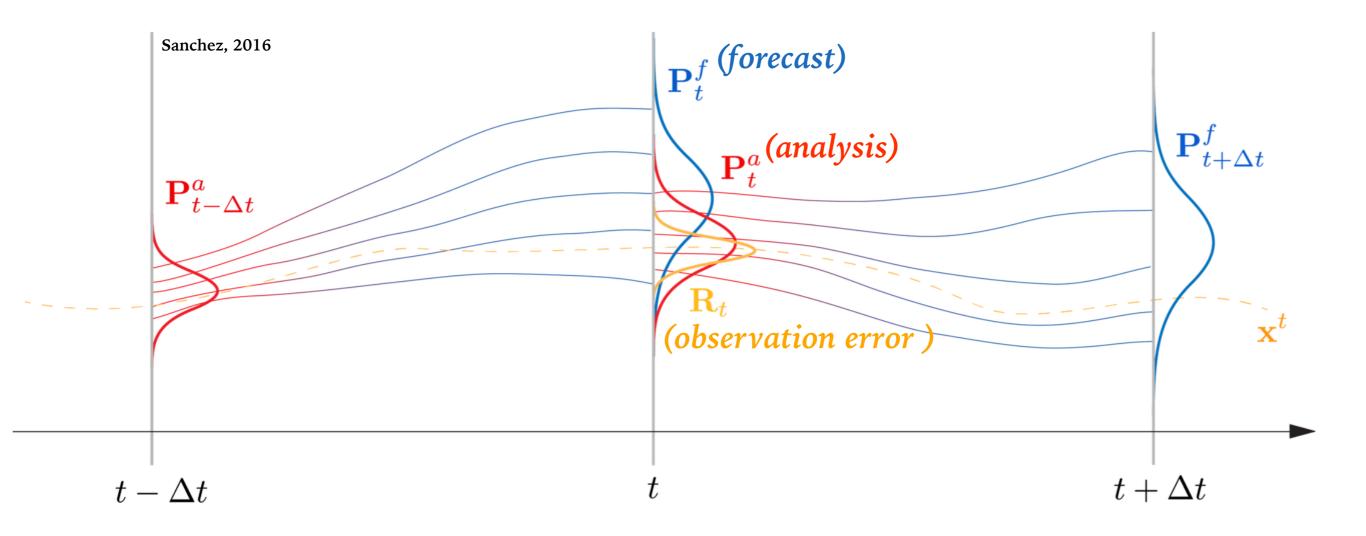


OVERVIEW: THE ENSEMBLE KALMAN FILTER (EnKF)

Model Error Covariance

$$P^{f} = \overline{(x^{f} - \overline{x^{f}})(x^{f} - \overline{x^{f}})^{T}}$$

$$P^{a} = \overline{(x^{a} - \overline{x^{a}})(x^{a} - \overline{x^{a}})^{T}}$$

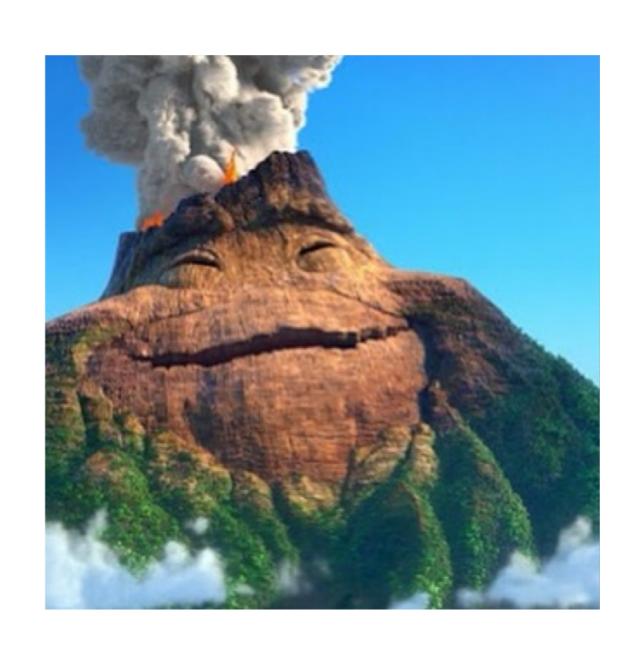


Can we apply data assimilation to volcanology to forecast volcanic unrest?

VOLCANIC DATA ASSIMILATION: HOW TO?

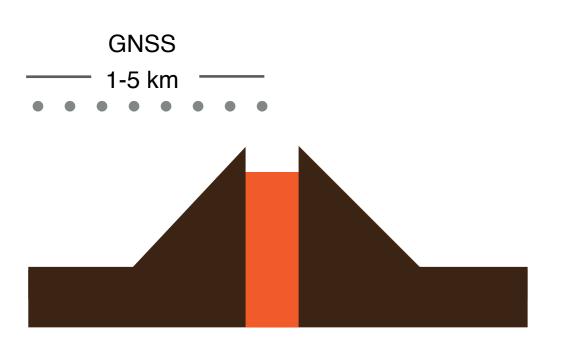
Key parameter: Overpressure

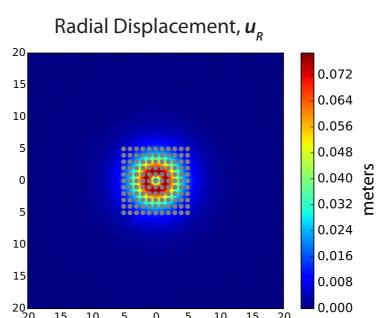
The magma chamber can rupture if it surpasses a failure overpressure value.

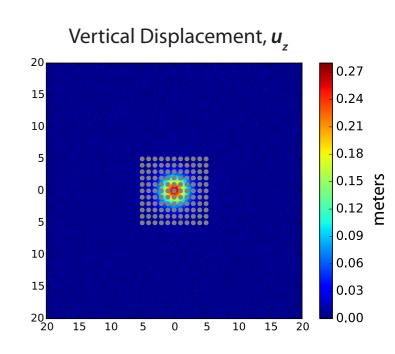


Objective: Find out when the magma chamber will rupture

JOINT ASSIMILATION OF GNSS AND INSAR: SYNTHETIC CASES







GNSS dataset:

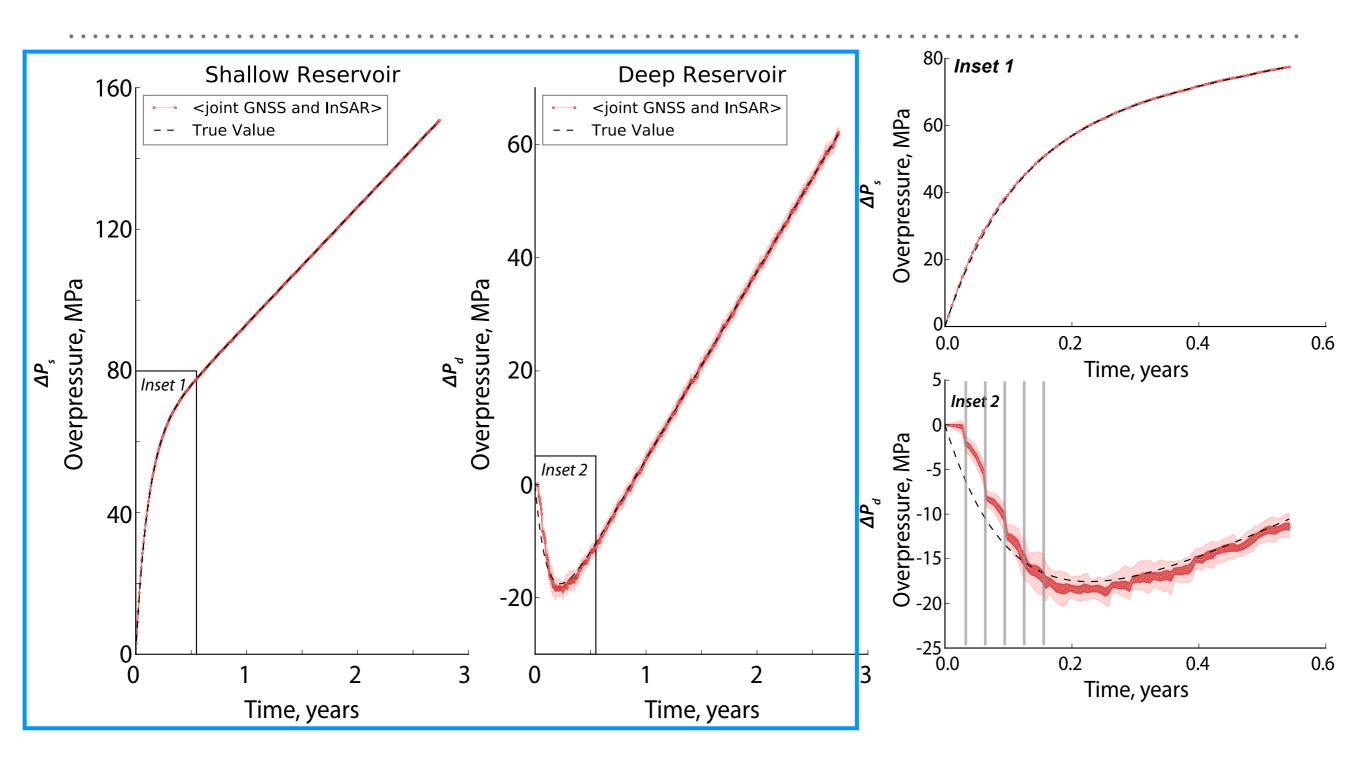
The assimilation interval, $\Delta t = 2 \, \mathrm{days}$ The frequency of available observation every 2 days. 10 observations are used for the synthetic cases.

5 radial and 5 vertical

InSAR dataset:

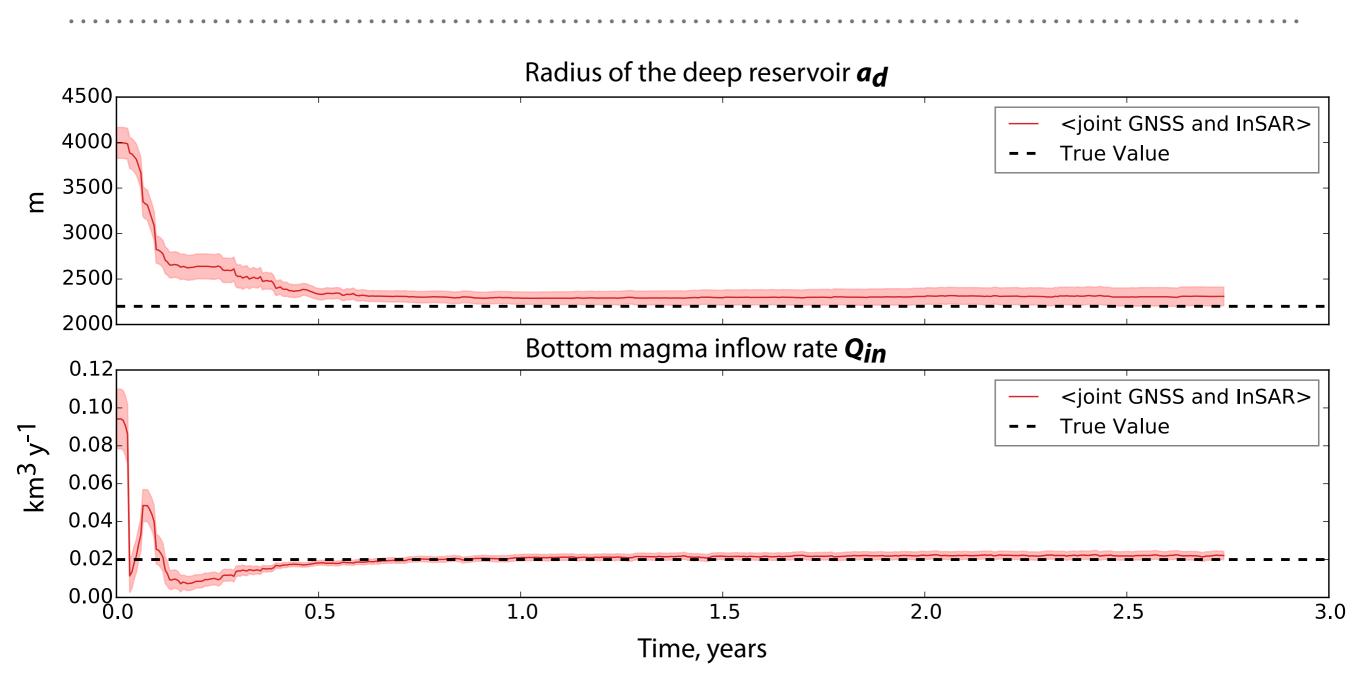
The assimilation interval, $\Delta t = 2 \, \mathrm{days}$ The frequency of available observation is **every 12 days. 242 observations** are used for the synthetic cases.

JOINT ASSIMILATION OF GNSS AND INSAR: SYNTHETIC CASES



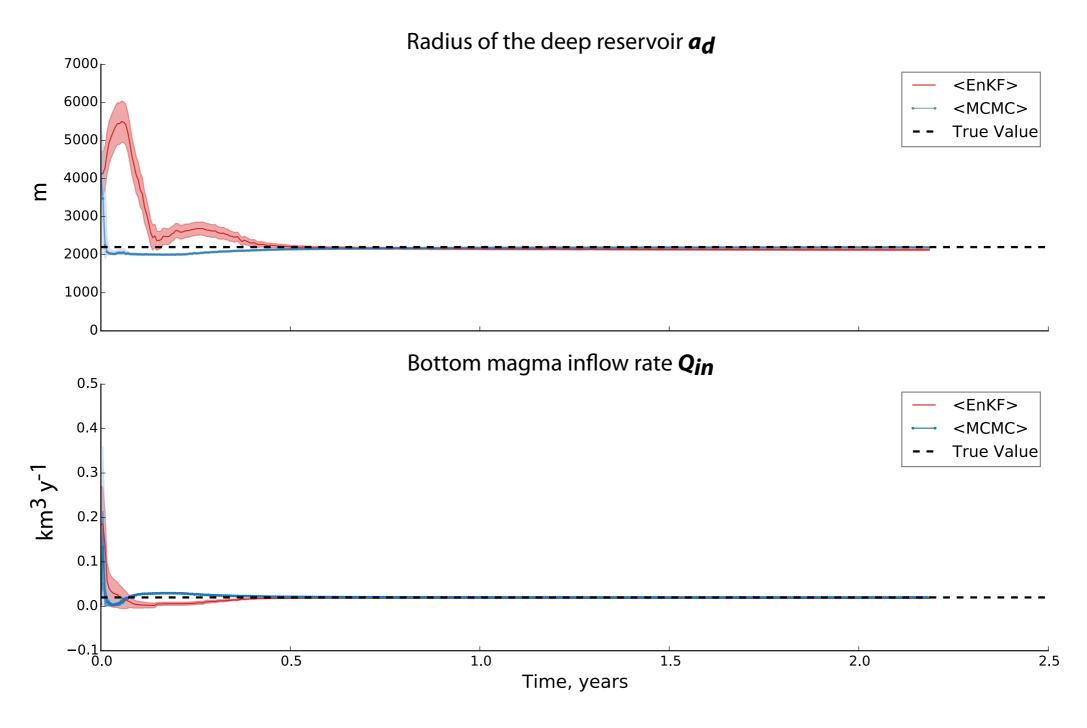
Every time InSAR is introduced, the trajectory of the estimation is forced towards its true behaviour.

JOINT ASSIMILATION OF GNSS AND INSAR: SYNTHETIC CASES



EnKF works as well with parameter estimation using joint assimilation of GNSS and InSAR!

DATA ASSIMILATION VS BAYESIAN INVERSION: SYNTHETIC CASES



MCMC allows faster convergence to true values <u>assuming that the</u> <u>parameters remained constant in time</u>

If inversion (like MCMC) is super awesome, then why do we need data assimilation?

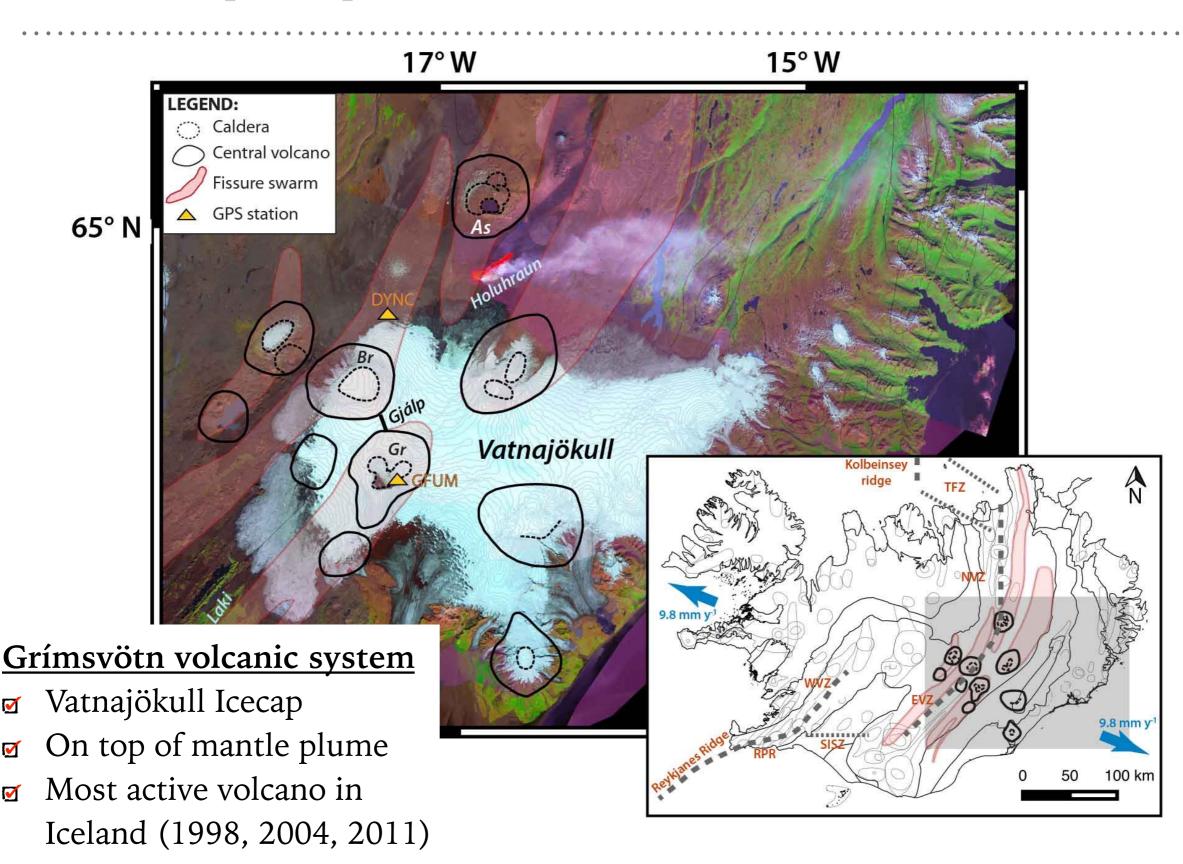
Inversion still has some limitations which include:

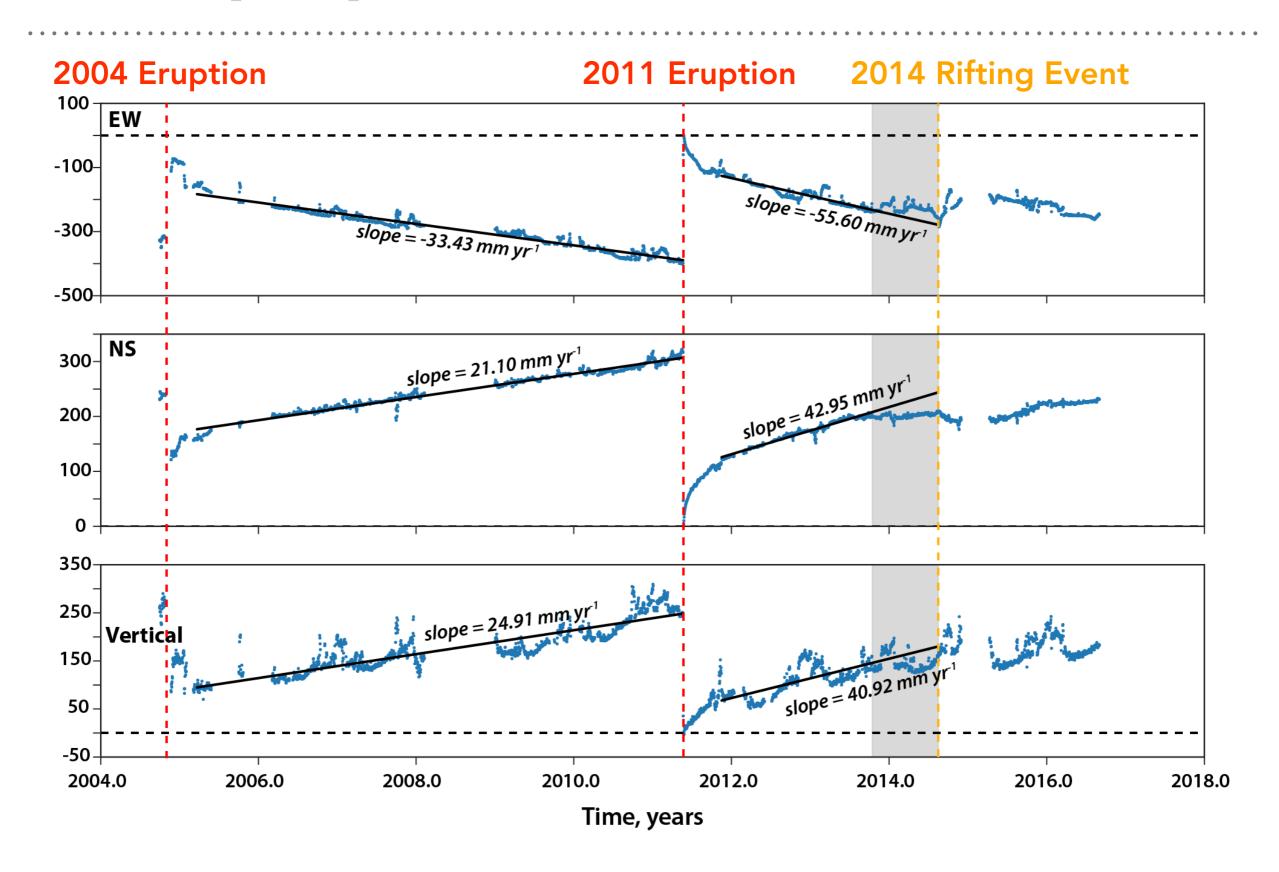
- 1. inefficiency to incorporate data in real time,
- 2. model errors are often neglected during the process, and
- 3. difficulty in estimating time-dependent parameters

Inversion still has some limitations which include:

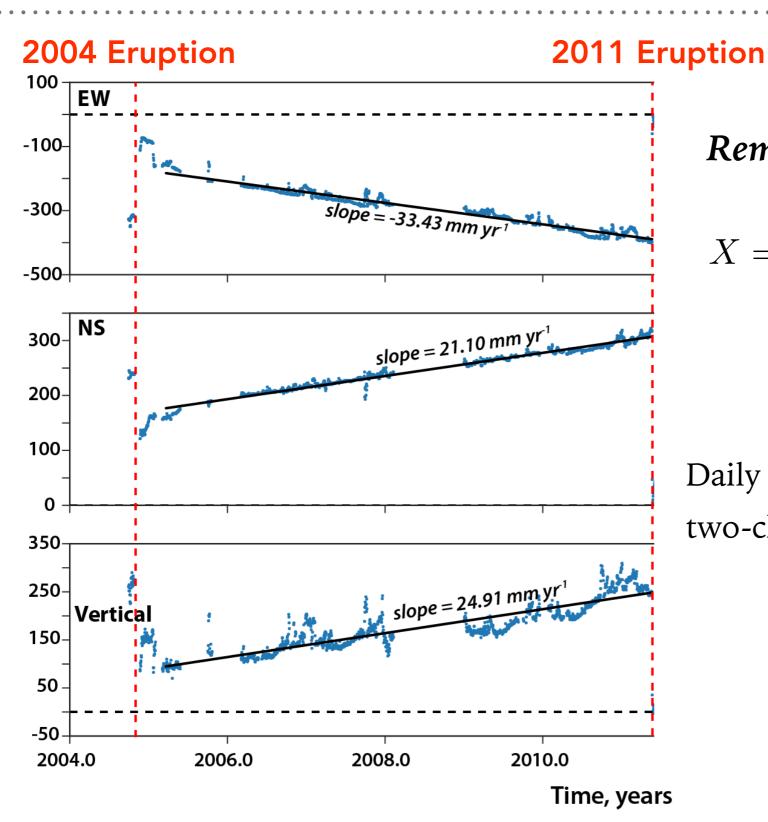
- inefficiency to incorporate data in real time,
- 2. model errors are often neglected during the process, and
- 3. difficulty in estimating time-dependent parameters

I propose data assimilation as a <u>complimentary tool</u> to inversion in order to address these problems





LET'S DO SOME "FORECASTING" WITH THE 2004-2011 INTER-ERUPTIVE DATASET



Remember:

$$X = \begin{bmatrix} \Delta P_s \\ \Delta P_d \\ Q_{in} \end{bmatrix}$$
 state variables uncertain parameter/s

Daily GNSS data is assimilated into the two-chamber model to get *X*.

NO data, NO update.

When will the [shallow] magma chamber rupture?

Step-1: Define a failure overpressure, Pf

Step-2: Calculate probability of rupture

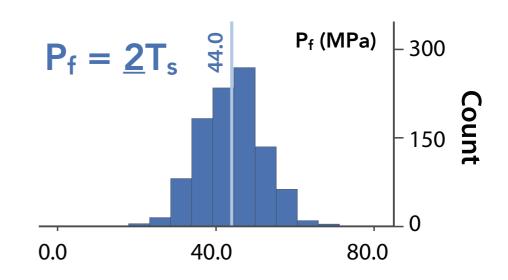
Step-1: Define a failure overpressure, Pf

In forecasting the rupture of a magma chamber, we can define a failure overpressure for the shallow magma chamber.

BUT P_f has a large uncertainty. It can vary depending on:

☑ the geometry of the reservoir
☑ local stress field

It must be defined carefully per specific volcano.



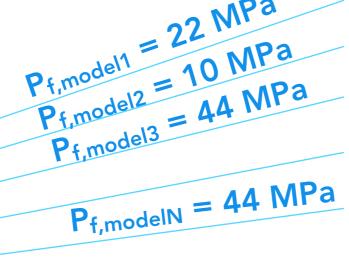
Failure constant Tensile overpressure
$$\uparrow$$
 Strength $P_f = k T_s$

at Grímsvötn: $T_S = 22$ MPa (Albino et al, 2010)

But in situ data are much lower $T_S = 1$ to 10 MPa (Haimson and Rummel, 1982)

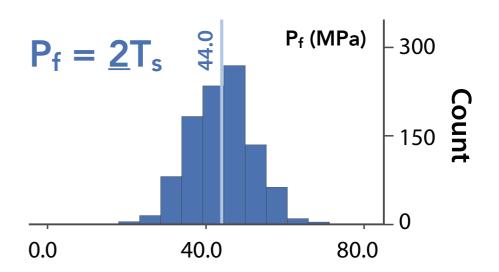
Step-2: Calculate probability of rupture

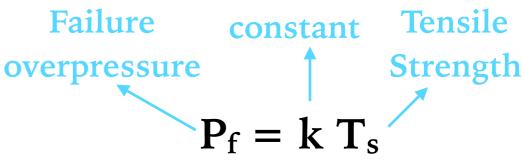
i. Assigned P_f value at t=0:



ii. Check at each step how many models exceeded the initially assigned P_f value:

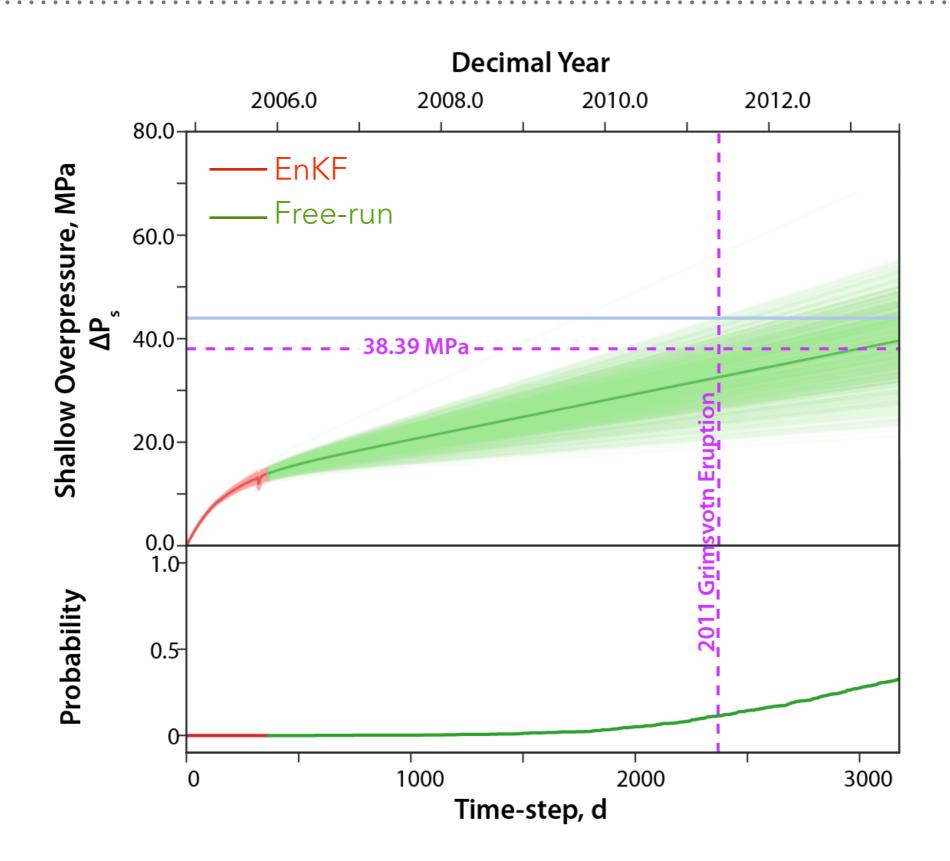
iii. Compute for the probability of rupture

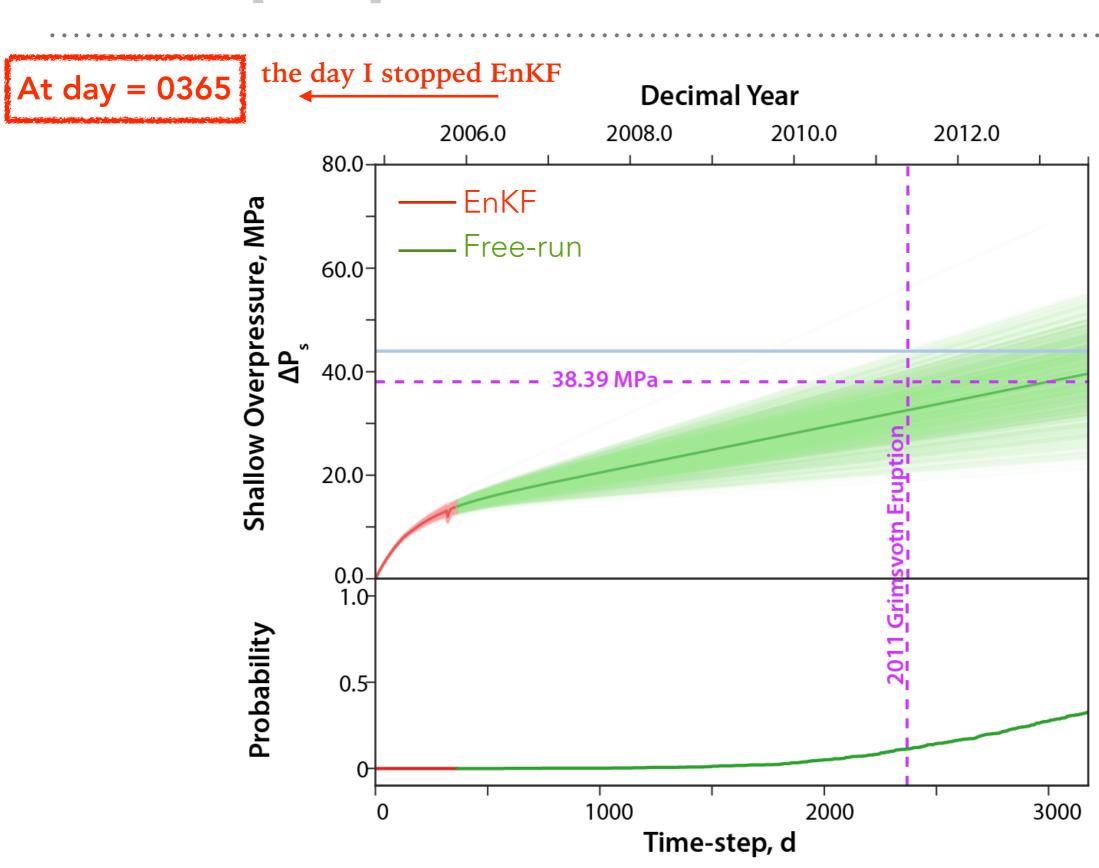


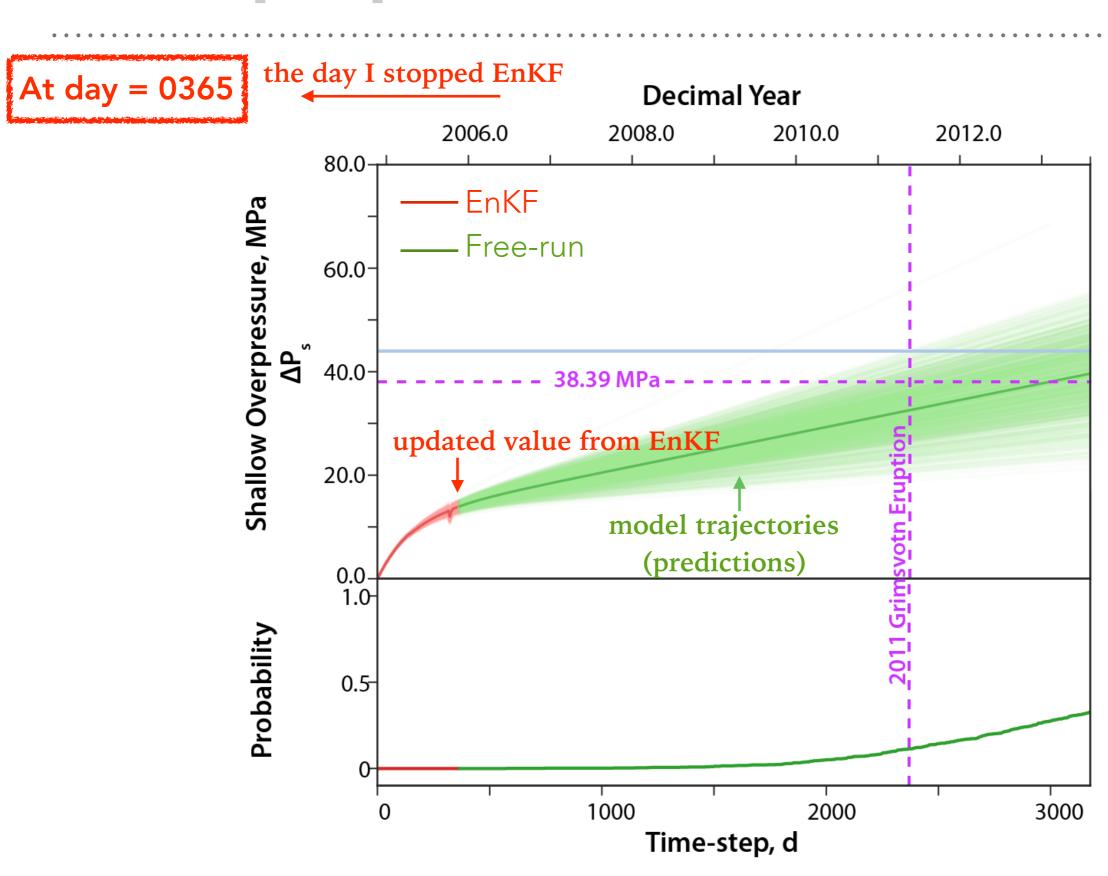


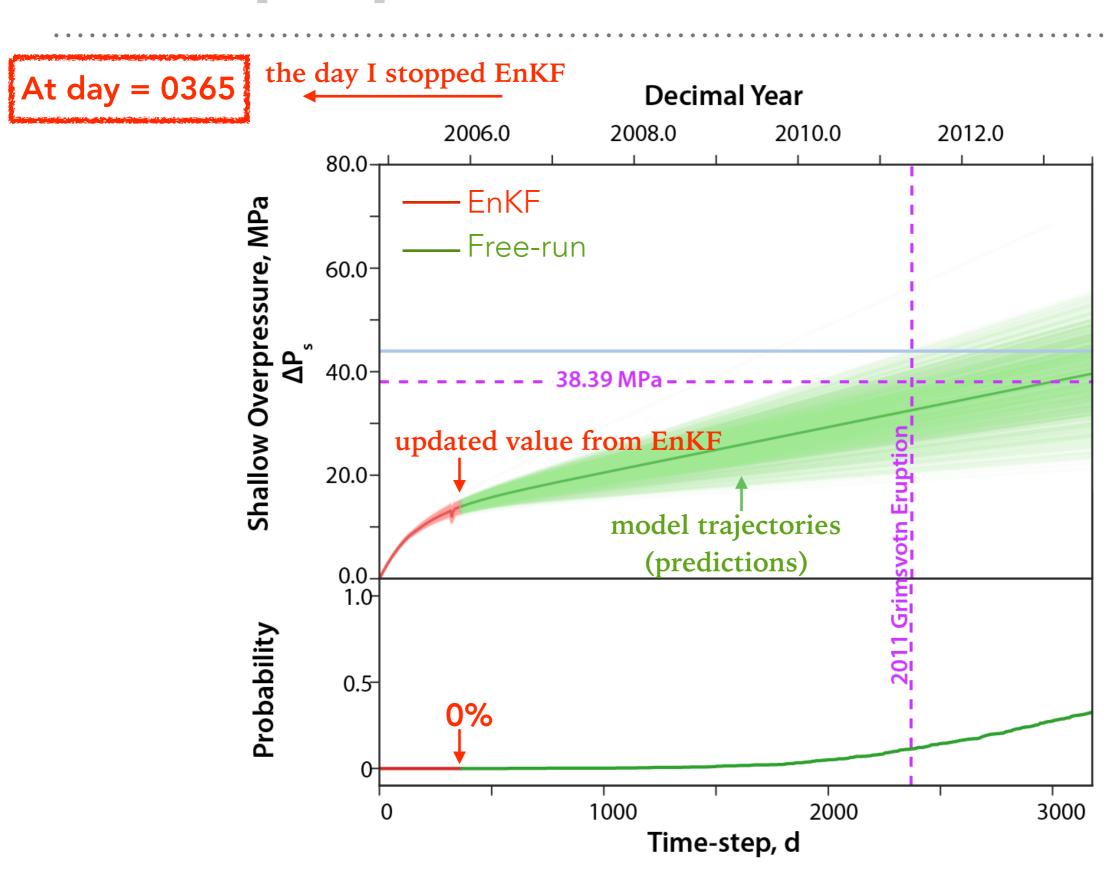
at Grímsvötn: $T_S = 22$ MPa (Albino et al, 2010)

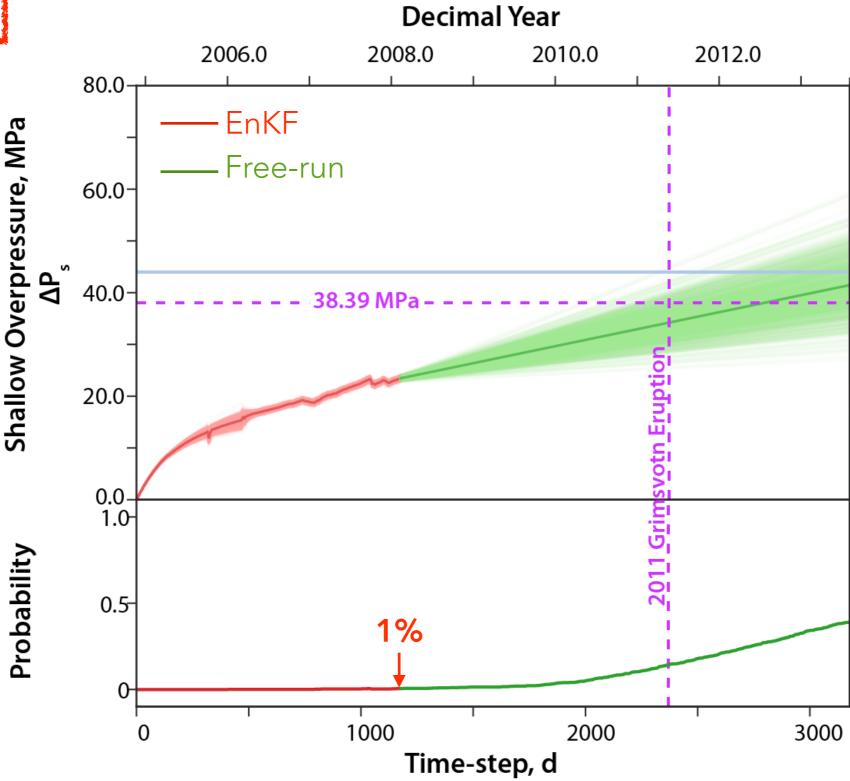
But in situ data are much lower $T_S = 1$ to 10 MPa (Haimson and Rummel, 1982)

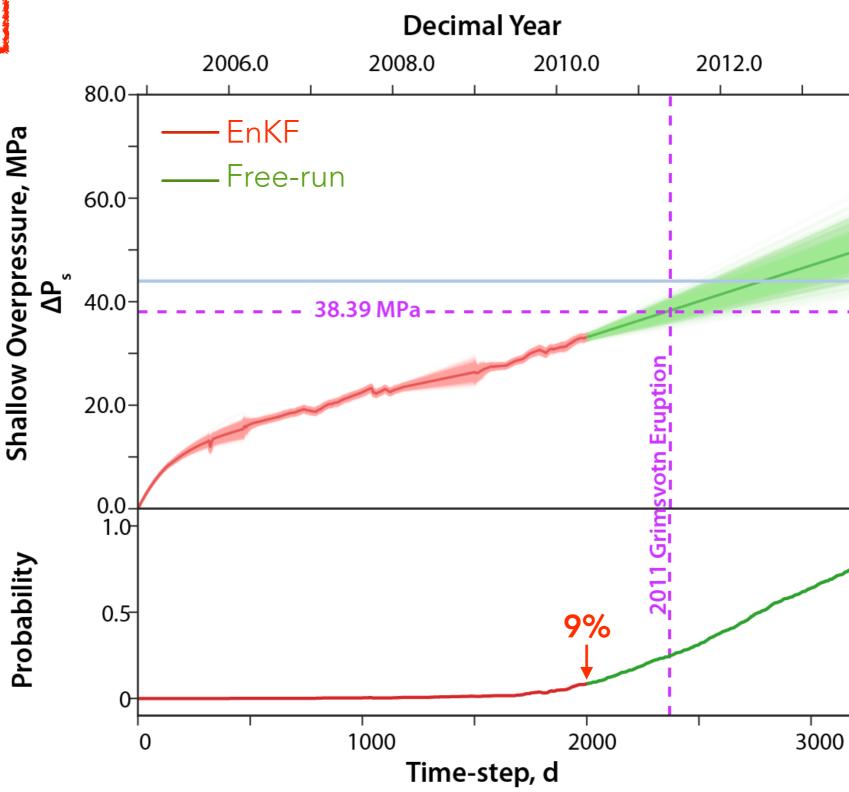


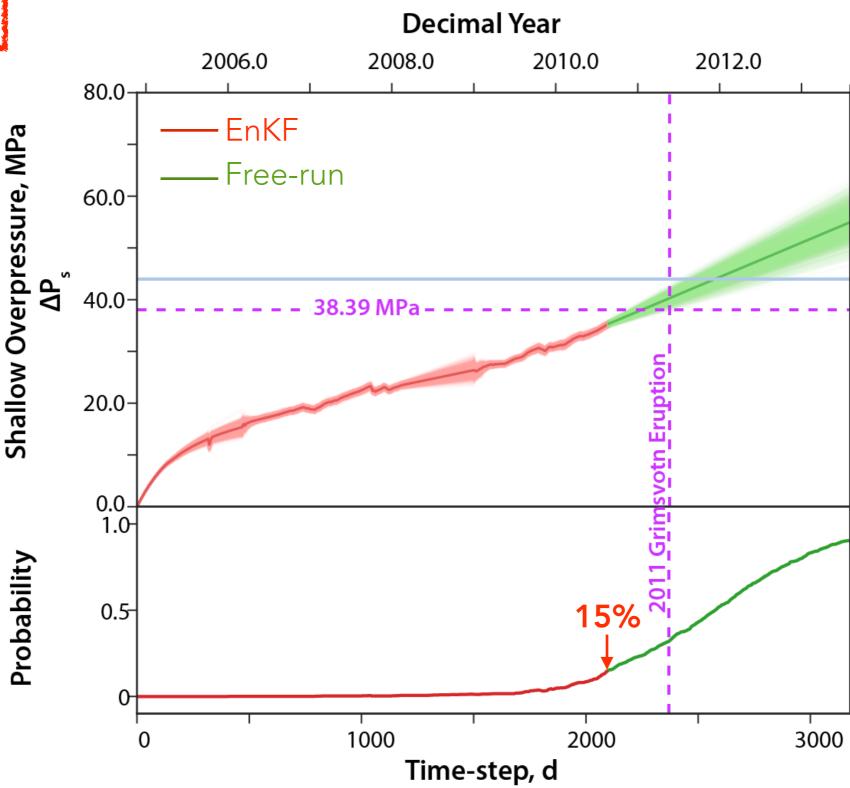


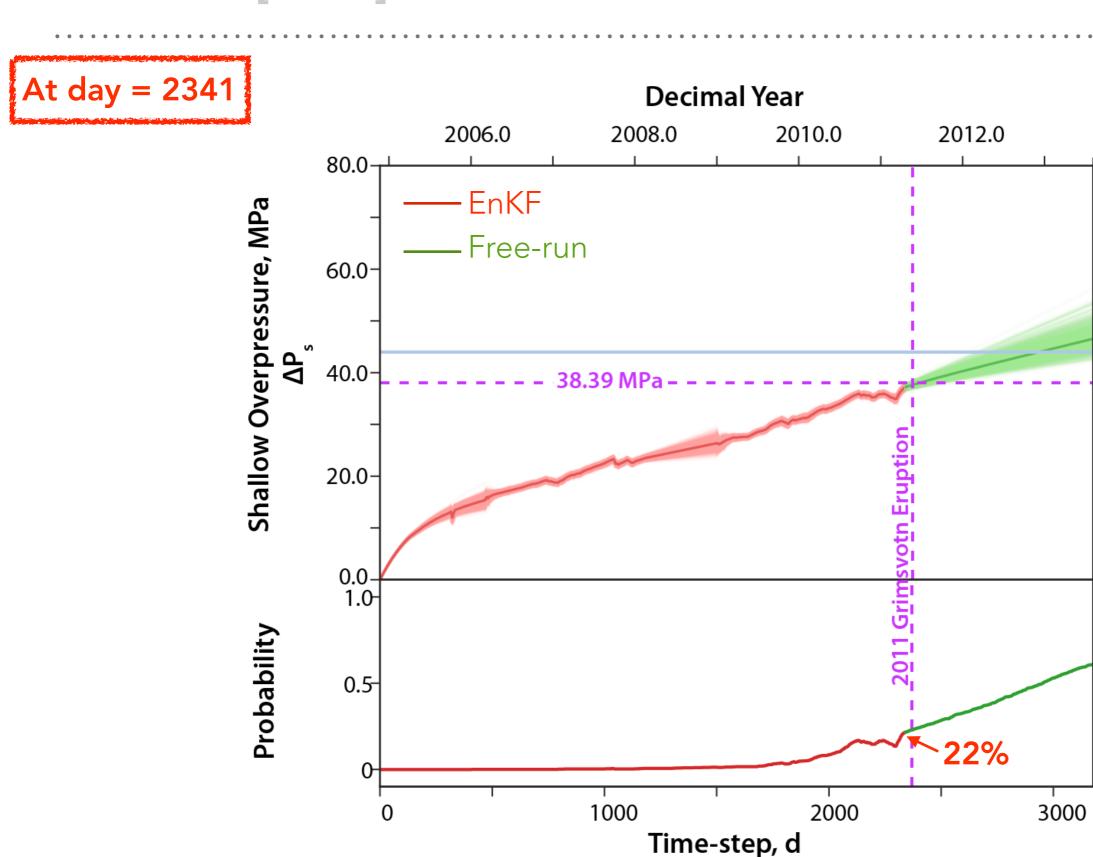


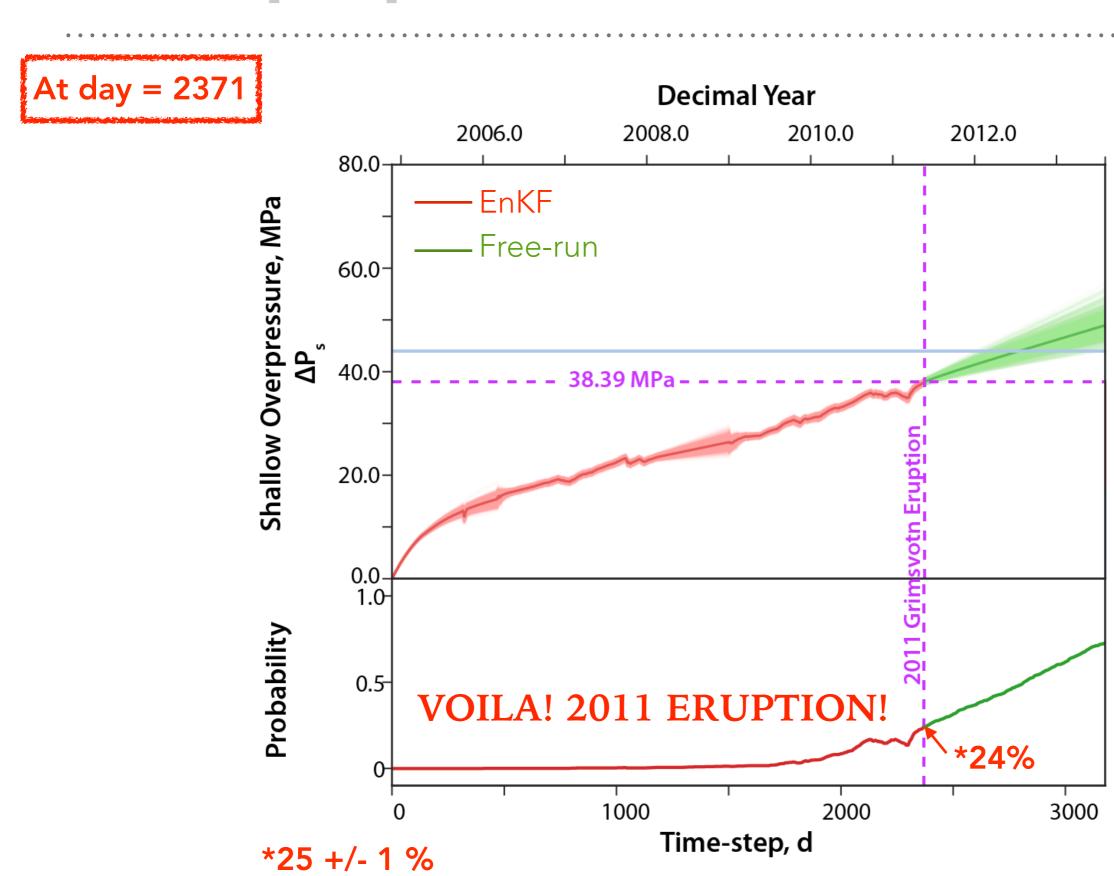


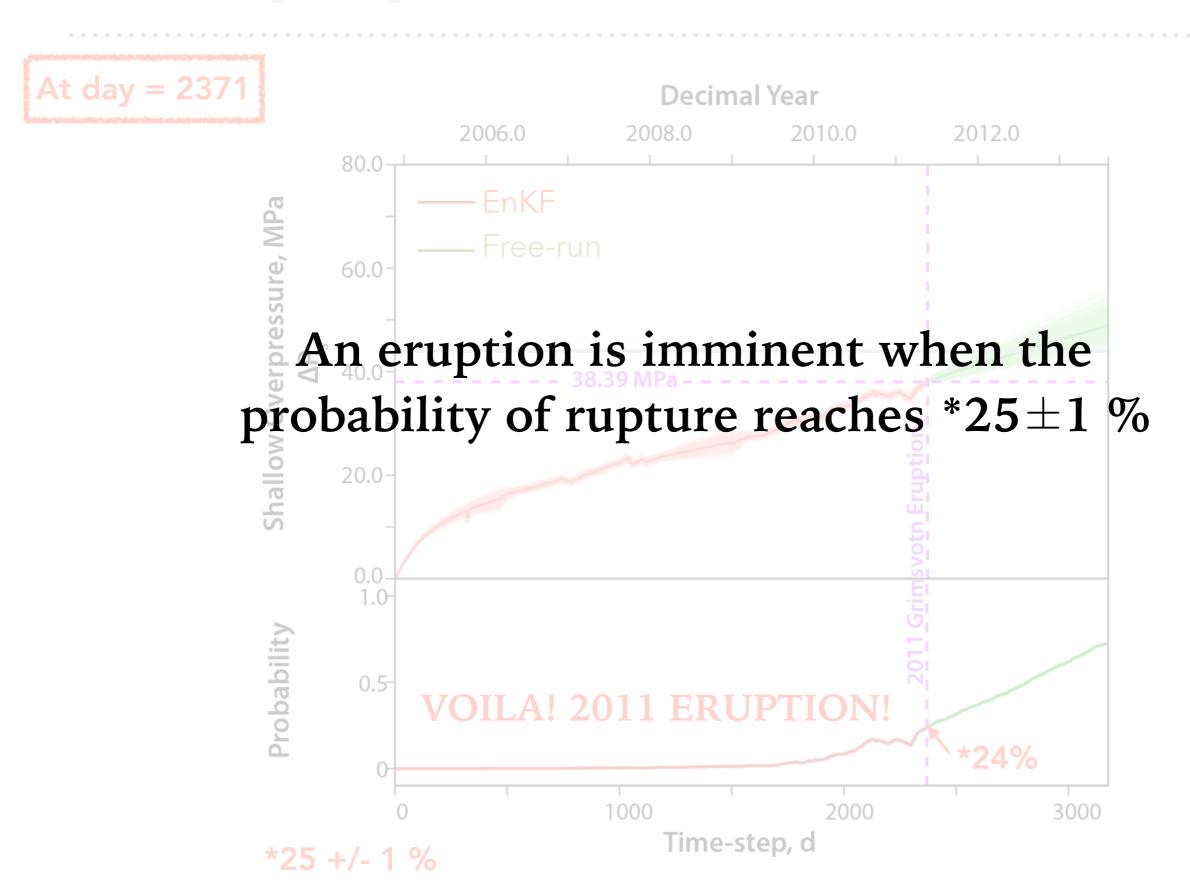






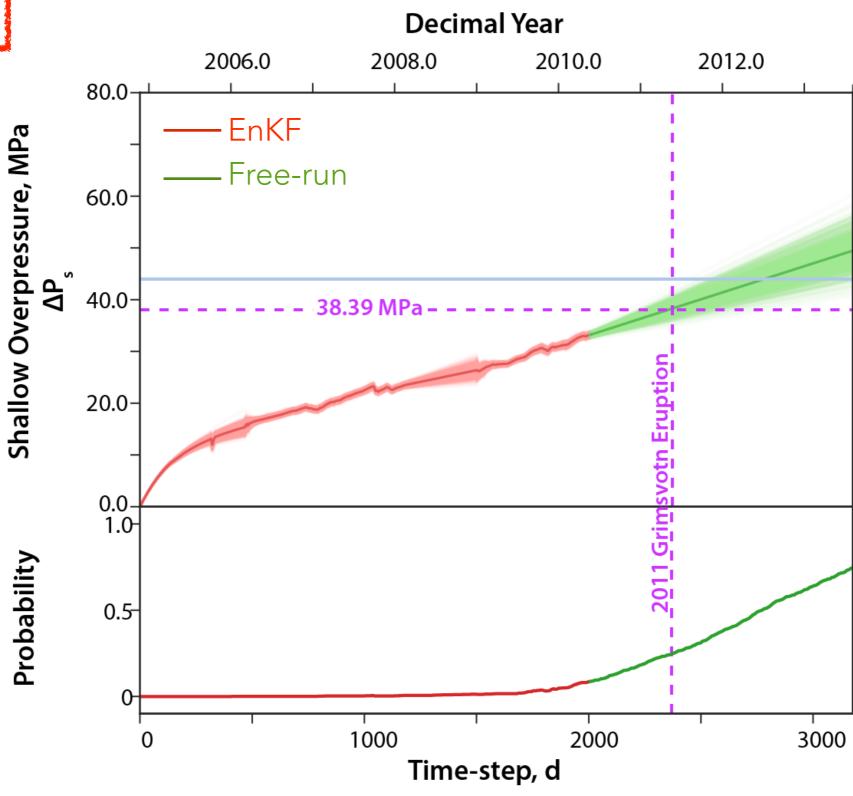




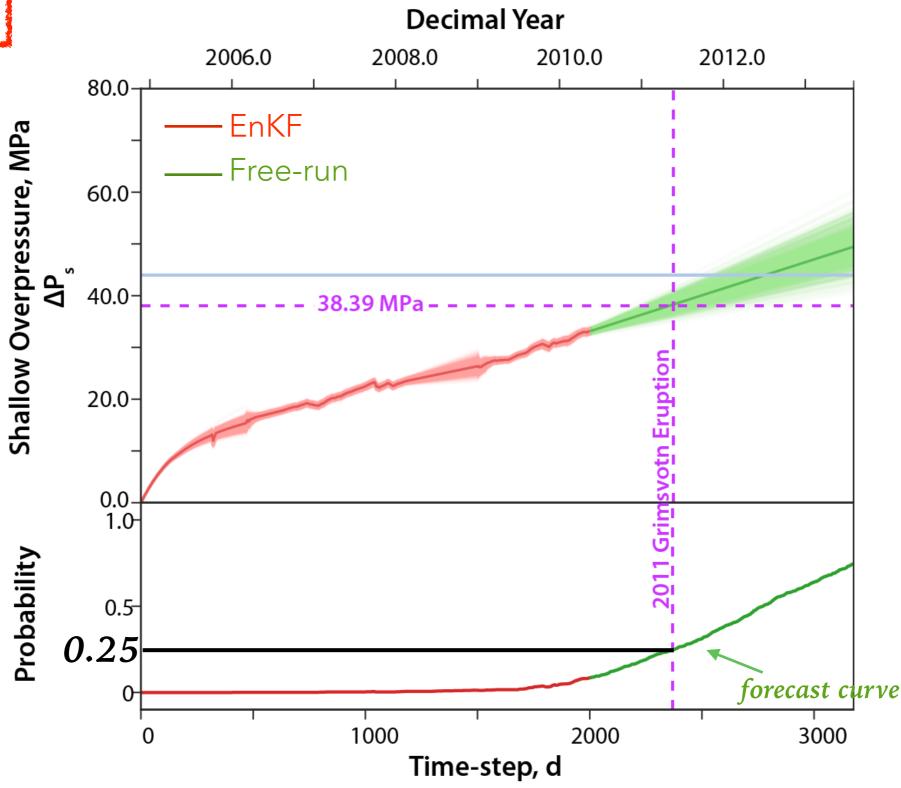


LET'S GO BACK IN TIME AND SEE WHAT HAPPENS...

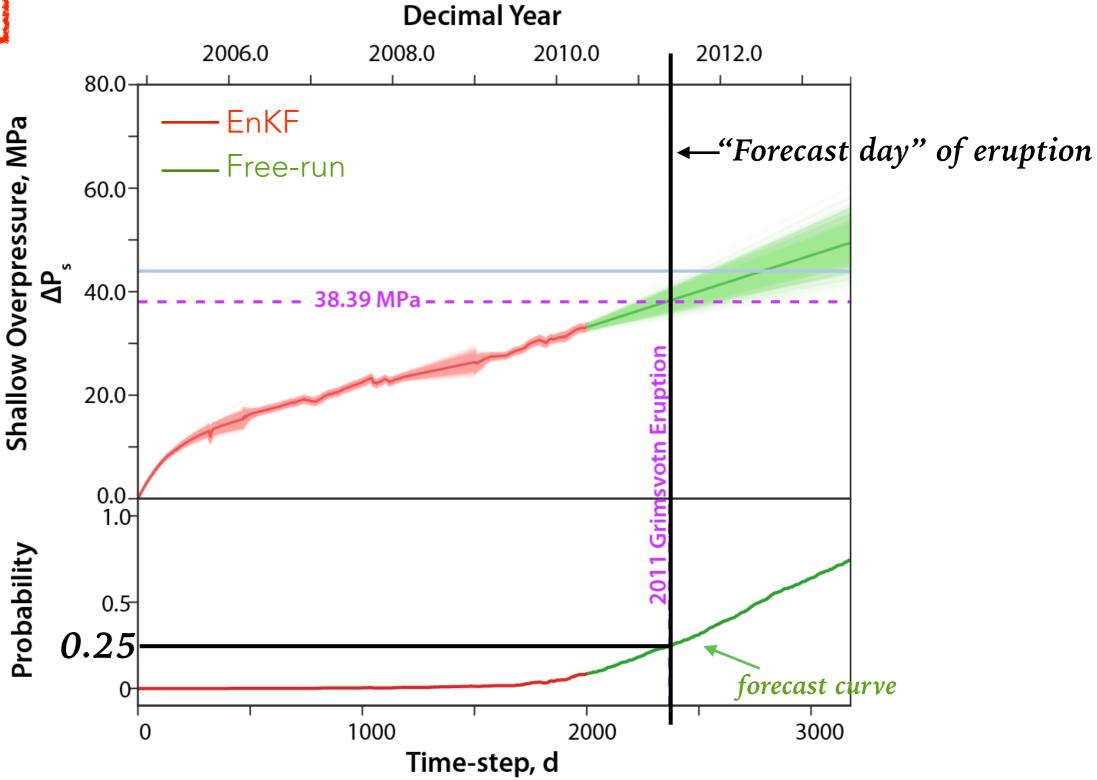
At day = 2006



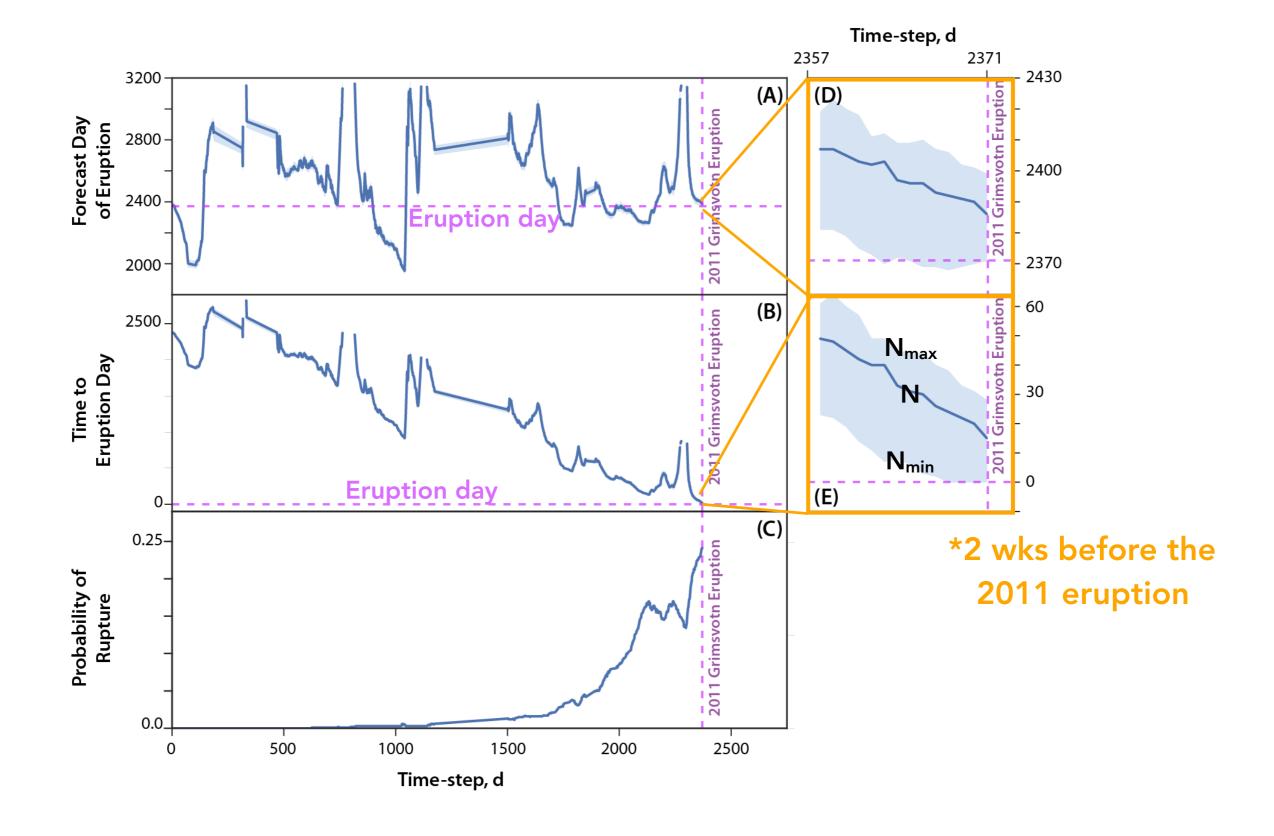
LET'S FIND WHERE THE <u>0.25 PROBABILITY</u> FALLS....



LET'S FIND WHERE THE 0.25 PROBABILITY FALLS.... ET VOILA!

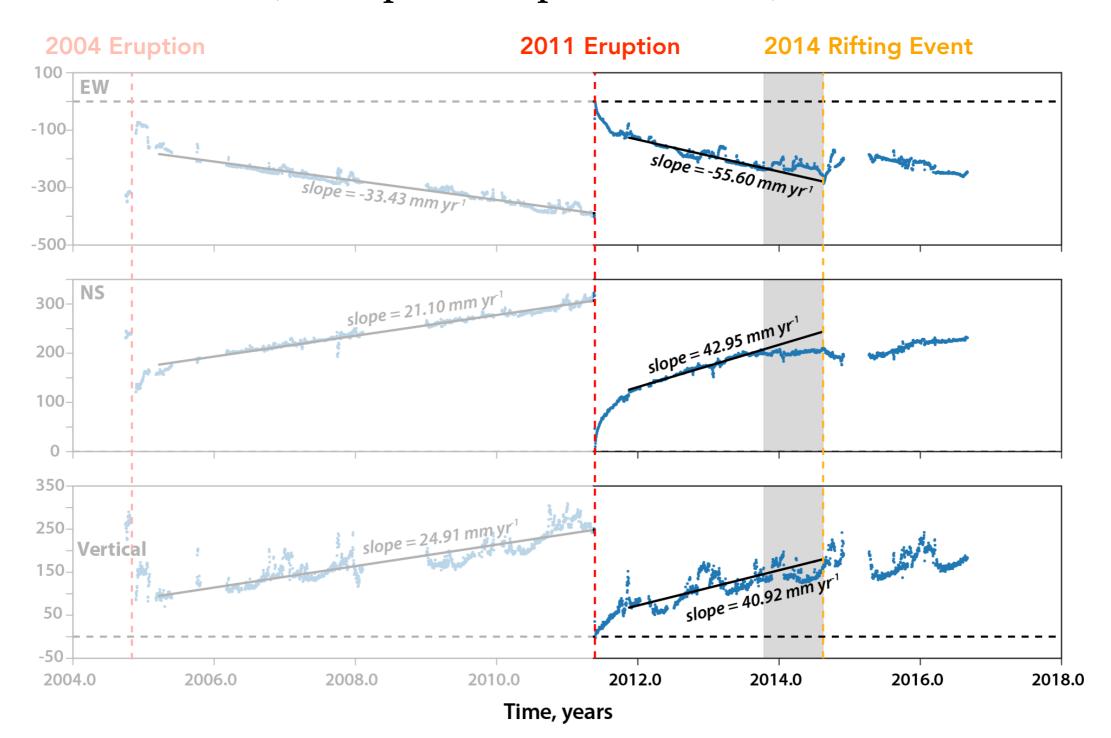


PREDICTED TIMING OF THE ERUPTION AS A FUNCTION OF TIME

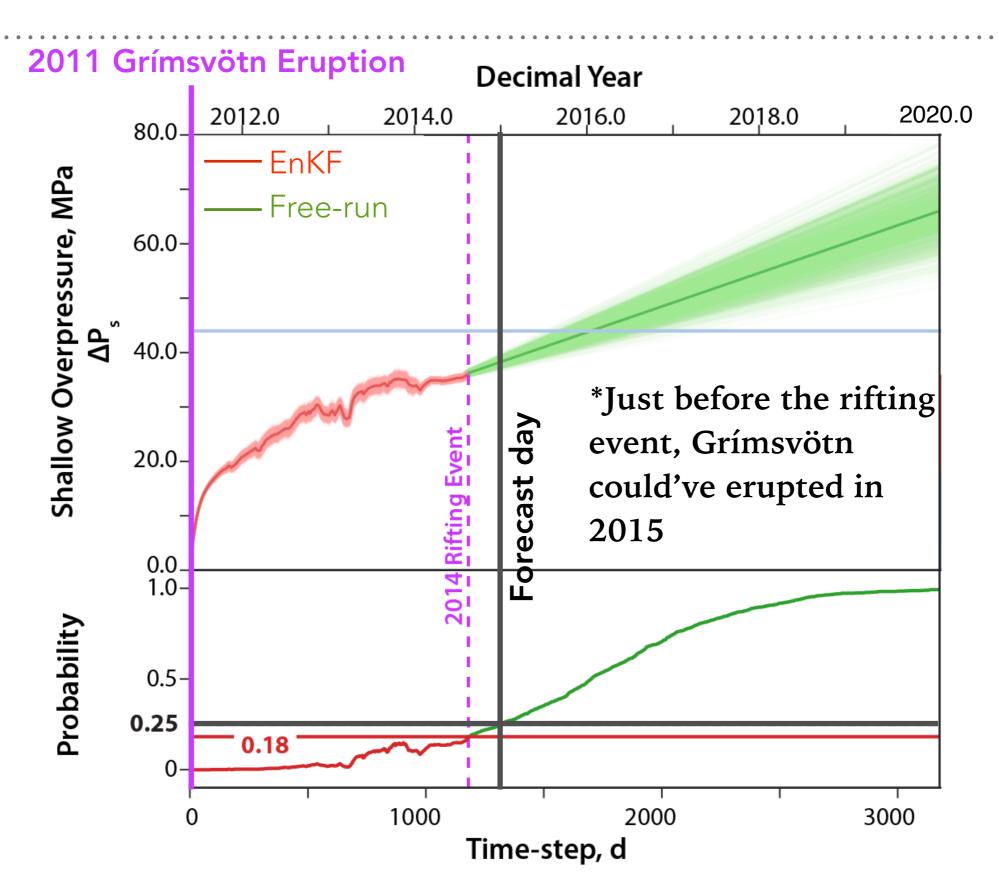


I KNOW WHAT YOU'RE THINKING... IT'S TOO GOOD TO BE TRUE!

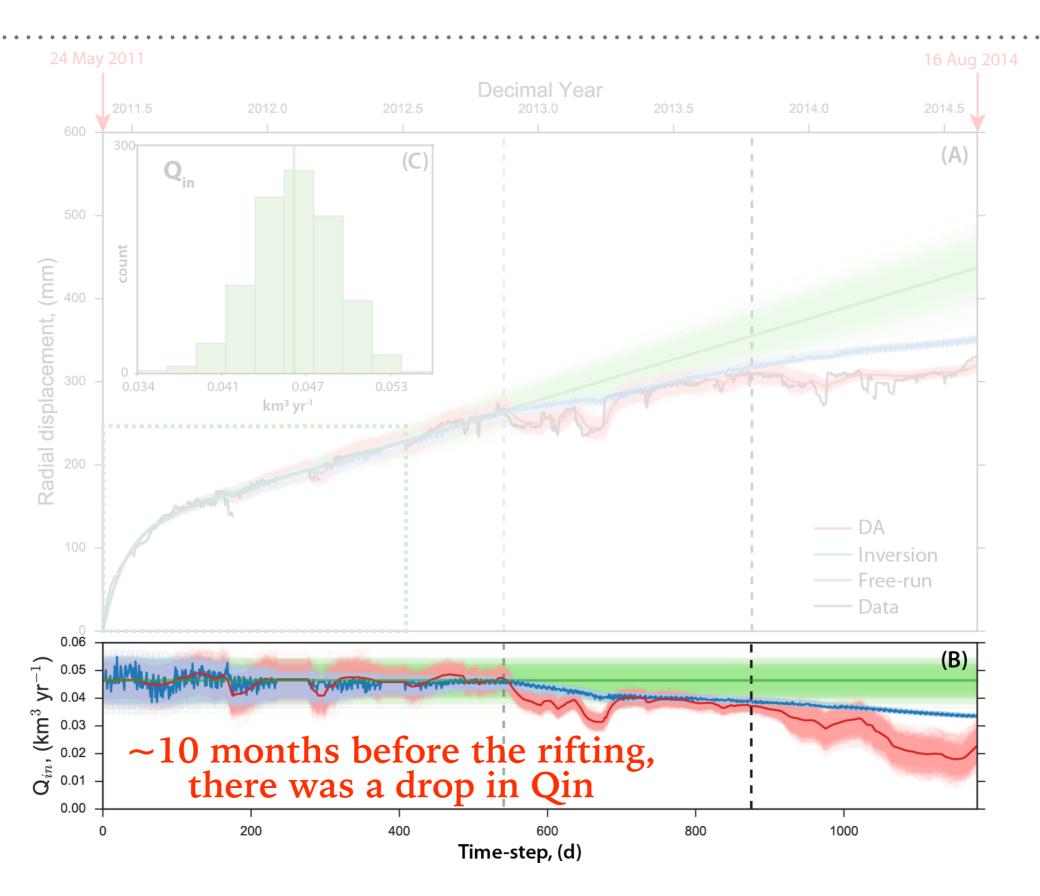
"Can the $25 \pm 1\%$ criterion work for the next eruptive cycle (2011 post-eruptive dataset)?"



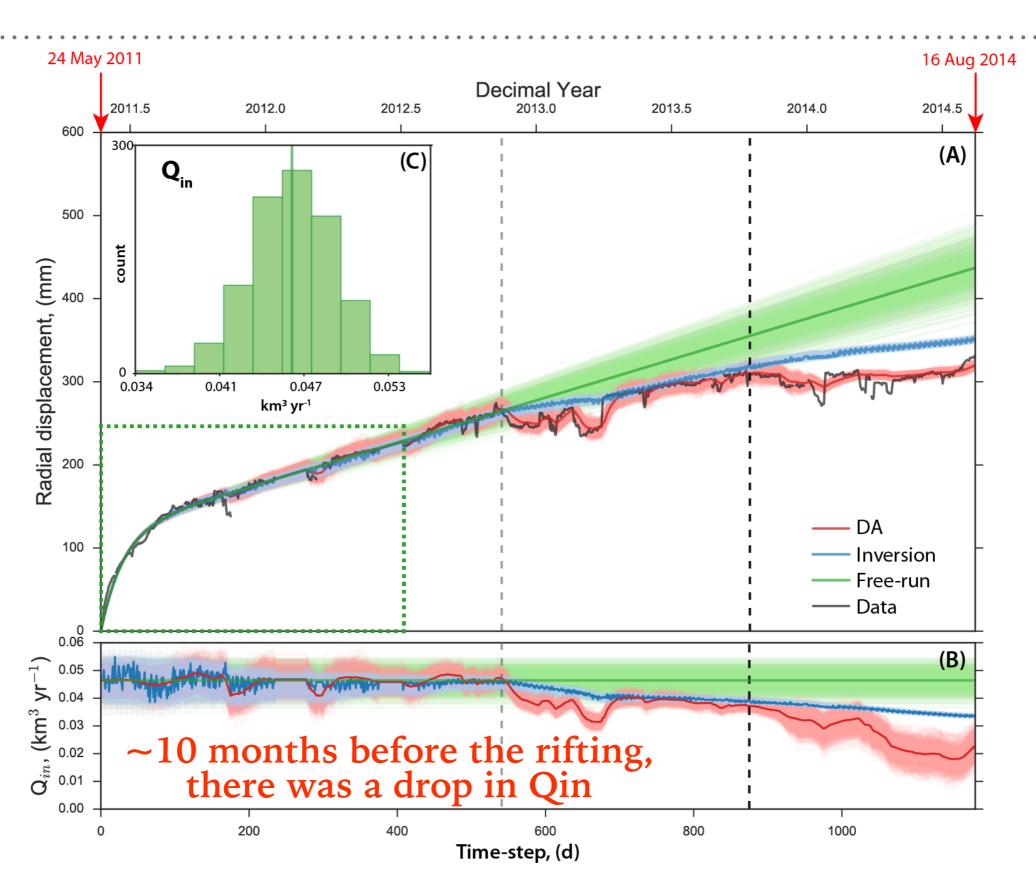
DARN! THE ANSWER IS NO...



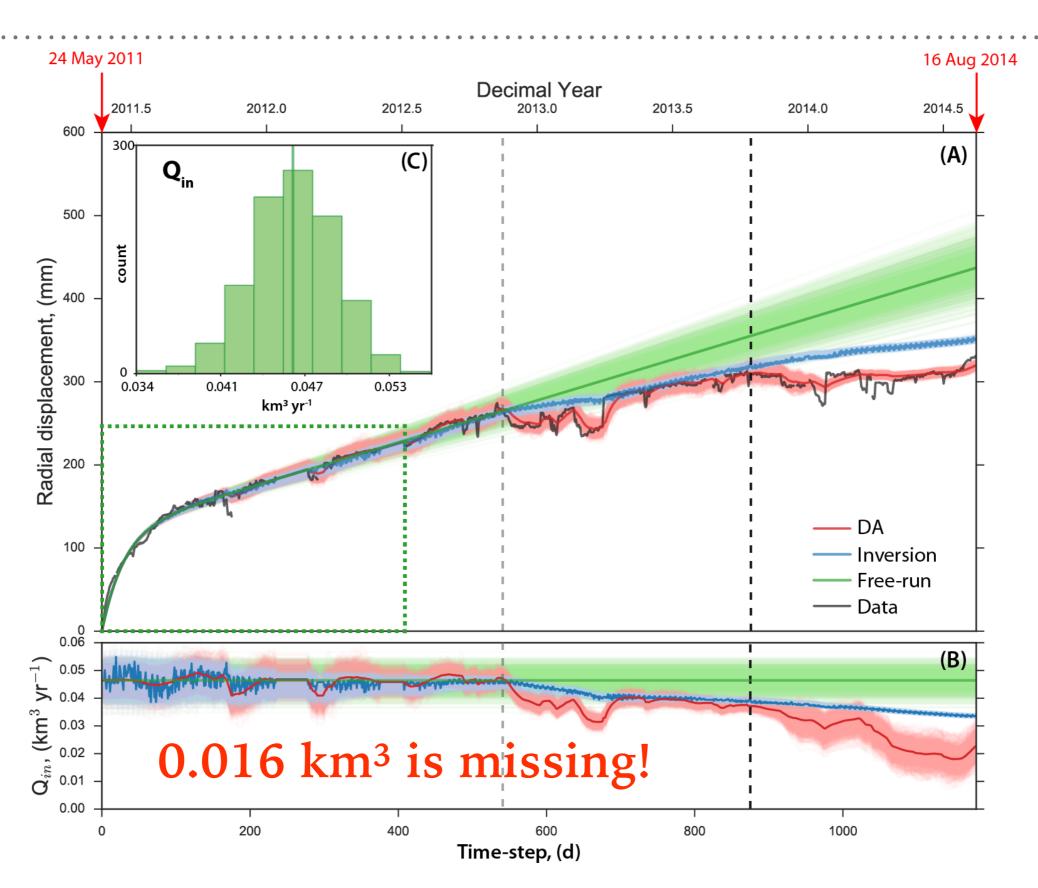
BUT WAIT! DON'T LOSE HOPE! SOMETHING CHANGED...



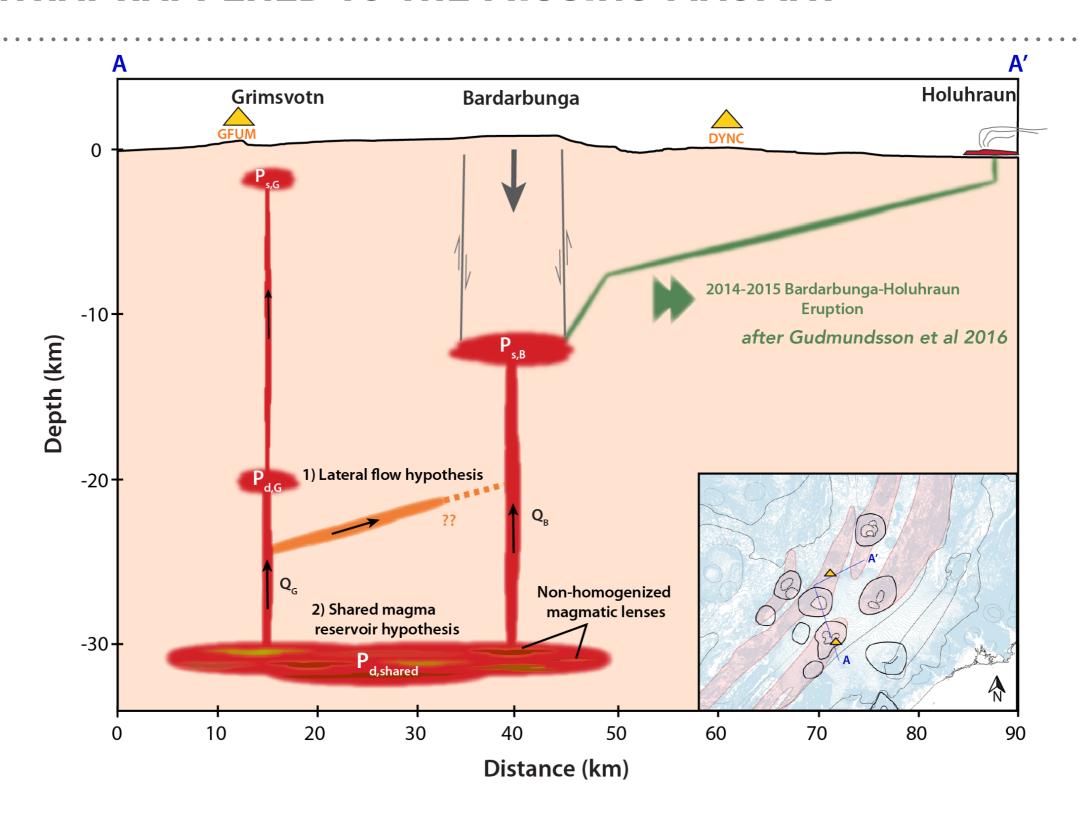
BUT WAIT! DON'T LOSE HOPE! SOMETHING CHANGED...



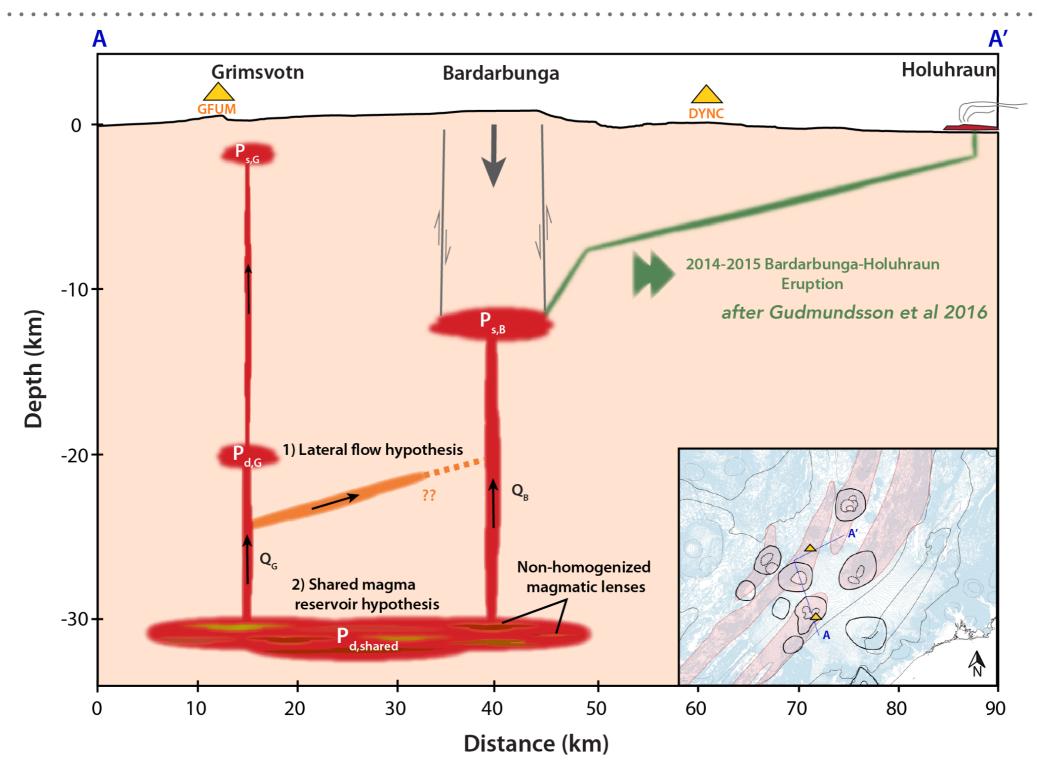
BUT WAIT! DON'T LOSE HOPE! SOMETHING CHANGED...



SO WHAT HAPPENED TO THE MISSING MAGMA?



SO WHAT HAPPENED TO THE MISSING MAGMA?



Surge in magma supply at Bárdarbunga + rifting event + gradual caldera collapse = 6-month long eruption

TO SUMMARIZE ALL MY "BLA BLAS"...

- ☑ Data assimilation shows great promise in addressing problems in volcanology.
- ☑ We can have a dynamic information on the volcanic system (e.g. overpressures, magma inflow rate).
- ☑ We can **predict the timing of eruption** given some assumptions on threshold overpressure.
- ☑ In addition to predicting volcanic eruptions, sequential assimilation of geodetic data has a unique potential to give insights into volcanic system roots.
 - ▶ We are able to track the variation of magma supply rate and evidence subsurface processes that occur between neighbouring volcanoes—which have never been done before.

OVERVIEW OF DA VOLCANIC DA: HOW TO? TOWARDS REAL-TIME FORECASTING BEYOND ERUPTION FORECASTING CONCLUSIONS AND PERSPECTIVES

PERSPECTIVES

Volcanic data assimilation is still in its infancy—there are a lot more things to do!

PERSPECTIVES

Volcanic data assimilation is still in its infancy—there are a lot more things to do!

"What is more likely to happen in the next decades is the development of ensemble models, which make volcanic forecasts that take account of both uncertainties and nonlinear dynamics"

- Steve Sparks [2003]

Guatemala volcano alert too late to save lives, officials admit

Sofia Menchu 6 MIN READ

EL RODEO, Guatemala (Reuters) - A communication breakdown between a disaster agency and volcanologists in Guatemala delayed evacuations as gas and ash clouds cascaded down the Fuego volcano last Sunday in its most violent eruption in four decades, authorities have admitted. https://www.reuters.com/

DETAILS ABOUT OUR WORK:

[*] Bato MG, Pinel V, Yan Y, Jouanne F. [Near] real-time forecasting of the rupture of a magma chamber using sequential data assimilation. in preparation for JGR.

[1] Bato MG, Pinel V, Yan Y, Jouanne F & Vandemeulebrouck J (2018). *Possible deep connection between volcanic systems evidenced by sequential assimilation of geodetic data.* Nature Scientific Reports, 8(1), 11702. DOI:10.1038/s41598-018-29811-x

[2] Bato MG, Pinel V, Yan Y (2017). Assimilation of Deformation Data for Eruption Forecasting: Potentiality Assessment Based on Synthetic Cases. Frontiers Earth Science 5:48. DOI: 10.3389/feart.2017.00048

PRESS MENTIONS:

- [1] Volcano Forecast? New Technique Could Better Predict Eruptions, Scientific American
- [2] Scientists are trying to use satellites to forecast volcanic eruptions, CNBC
- [3] Think weather forecasts are bad? Try forecasting a volcanic eruption, Popular Science
- [4] Predicting eruptions using satellites and math, Eurekalert
- [5] Scientists predict volcanic eruptions with satellites and GPS, CNN Tech

