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OVERVIEW OF DA VOLCANIC DA: HOW T0O? TOWARDS REAL-TIME FORECASTING
BEYOND ERUPTION FORECASTING CONCLUSIONS AND PERSPECTIVES

OVERVIEW: WHAT IS DATA ASSIMILATION (DA)?

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

Data assimilation is a time-stepping
process that combines models,

— wew.| ODbservations and a priort information
e based on error statistics to predict the

ﬁ@i - | state of a dynamical system

Track Forecasts: al11@2015093000

—

40°N — |

35°N — il “any
b \#—~GFDVL/

= ~—~NHC official

WA M Common approach used in numerical

/" weather prediction (NWP)

30°N —

25°N — , R ﬁ ,
AN M Gained popularity in other fields of

| ] — . i geosclences:

85°W 80°W 75°W 70°W 65°W 60°W . . .
 vegetation and soil moisture

* natural resource exploration

* geomagnetism

Example of data assimilation: Forecasting the
path of Hurricane Joacquin



OVERVIEW: BASIC CONCEPT OF DATA ASSIMILATION

« Models (M) are incorporated

with errors (q)

Everyone wants the “truth”, but the truth is,
M: Model operator

gx%fﬂ = M(xf) + ¢

we can only infer the “truth”

o Observations (D) are not free
of noise (€)

H: Observation operator; link between x and D

@D y1 = H(z],,) + ¢

e Efficient model + data
technique

*f: forecast
a: analysis




OVERVIEW OF DA VOLCANIC DA: HOW T0O? TOWARDS REAL-TIME FORECASTING
BEYOND ERUPTION FORECASTING CONCLUSIONS AND PERSPECTIVES

OVERVIEW: INGREDIENTS OF DATA ASSIMILATION

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

o Observations / data

@ Deformation data (e.g. InSAR/
GNSS time-series)

ol




OVERVIEW OF DA VOLCANIC DA: HOW T0O? TOWARDS REAL-TIME FORECASTING
BEYOND ERUPTION FORECASTING CONCLUSIONS AND PERSPECTIVES

OVERVIEW: INGREDIENTS OF DATA ASSIMILATION

0000000000000000000000000000000000000000000000000000000000000000

ol

O© Dynamical model

™ Two-chamber model (Reverso
et. al. 2014)

0000000000000000000000000000000000000000

(G, V)

modified after Reverso et. al. 2014



OVERVIEW OF DA VOLCANIC DA: HOW T0O? TOWARDS REAL-TIME FORECASTING
BEYOND ERUPTION FORECASTING CONCLUSIONS AND PERSPECTIVES

OVERVIEW: INGREDIENTS OF DATA ASSIMILATION

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

Model description:

* Homogeneous, isotropic, elastic half-
space

* Two reservoirs connected by a
hydraulic pipe

® Deeper reservoir is fed by a magma

. GI
inflow, Qi (G, V)

Several volcanoes are evidenced to
have multiple reservoir systems

Data / observations:
U, : Vertical displacement
Ur: Radial displacement

modified after Reverso et. al. 2014



OVERVIEW OF DA VOLCANIC DA: HOW T0O? TOWARDS REAL-TIME FORECASTING
BEYOND ERUPTION FORECASTING CONCLUSIONS AND PERSPECTIVES

OVERVIEW: INGREDIENTS OF DATA ASSIMILATION
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Evolution of overpressures: M

AP

.,  —AP
1+1

St . a 4
s = 8% (o — pm)gHe + APy, — AP, )

tit1—ts 8uysHcag3

Shallow Reservoir

ur(r,t;) = (1-v) v) (Oés s APdt )
uz(r, ti) — (1(—;1)) (HSO!SRLZ;APSEL + Hd&dR_gAPdti) =
—————————— E———— e —— T — g
3
Two-chamber model P
) Q.
é O
; =
O
—_ P 4
al’
s

modified after Reverso et. al. 2014

Time
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OVERVIEW: INGREDIENTS OF DATA ASSIMILATION

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

ol

https://careercenter.umich.edu/files/cc/field/image/blank _business_card.png

O A priori information (Gaussian
PDF)



OVERVIEW: SEQUENTIAL DATA ASSIMILATION

i 7 state variables
APB; (have link to data)

Q;, |uncertain model
- - parameter/s
(no link to data)

v

A priori
information
Q,




OVERVIEW: SEQUENTIAL DATA ASSIMILATION

i 7 state variables
APB; (have link to data)

Q;, |uncertain model
- - parameter/s
(no link to data)

v
A priori :
o 1Pmatior'1 ...... » Dynamical
model

Qin ajtf_|_1 — MCB? _|_ C]




OVERVIEW: SEQUENTIAL DATA ASSIMILATION

*f: forecast step

I 7 state variables - _
X — 252 (have link to data) ; ﬁi s
— . N
Qin unCel‘tain mOdel : .............. .’ d
- - parameter/s I Qin ]
(no link to data)
v
A priori .
‘ FETIEE » Dynamical
information odel

o ], = Mazf +q




OVERVIEW: SEQUENTIAL DATA ASSIMILATION

*f: forecast step

I 7 state variables i i
¥ _ ﬁg‘; (have link to data) F ﬁig
= . T =
Q,, |uncertainmodel 177777 > ‘
- - parameter/s ; | Qin _
(no link to data) :
v
v . Assimilation | |
| Scheme: EnKF 4 ...... Observa}:lons
A priori : I b
o fmatiofl ...... » Dynamical K =P/H"(HPIHT + R)™

model
Qin ajtf_|_1 — MCB? _|_ C]




OVERVIEW: SEQUENTIAL DATA ASSIMILATION

*f: forecast step

" AP, ]| state variables T AP,
X=|ap, | " hflk T » 1 =] APy
Q,, |uncertain model . ;
- - parameter/s ; | Qin _
(no link to data) :
v
v . Assimilation .
| Scheme: EnKF 4 ...... Observa}:lons
A priori : I b1
o fmatiofl ...... » Dynamical K =P/H"(HPIHT + R)™
model :
Q vl = Mz} + g :
A ;*a: analysis step
ooooooooooooooo xa’
¢ =2/ + K(D — Ha')




OVERVIEW: THE ENSEMBLE KALMAN FILTER (EnKF)

Model Error Covariance

Sanchez, 2016

pi (forecast)

t
. f
pa (analysts) Py Ay
P¢ :
t—At
\.
. ot
(observation error X
>

t — At t t+ At



Can we apply data assimilation to volcanology
to forecast volcanic unrest?



OVERVIEW OF DA VOLCANIC DA: HOW TO? TOWARDS REAL-TIME FORECASTING
BEYOND ERUPTION FORECASTING CONCLUSIONS AND PERSPECTIVES

VOLCANIC DATA ASSIMILATION: HOW T0?

Key parameter: Overpressure

The magma chamber can rupture if it
surpasses a failure overpressure value.

Objective: Find out when the magma chamber will rupture



OVERVIEW OF DA VOLCANIC DA: HOW TO? TOWARDS REAL-TIME FORECASTING
BEYOND ERUPTION FORECASTING CONCLUSIONS AND PERSPECTIVES

JOINT ASSIMILATION OF GNSS AND INSAR: SYNTHETIC CASES

GNSS
1-5 km

0.27

0.072
0.24
0.064
410.21
10.056

10.048 10-18

10.040 §0-15

meters
meters

10.032 10.12

0.024 0.09

0.016 0.06

0.008 0.03

0.000 0.00

0 0
20 15 10 5 0 5 10 15 20 20 15 10 5 0 5 10 15 20

GNSS dataset: INSAR dataset:

The assimilation interval, At = 2 days The assimilation interval, At = 2 days
The frequency of available The frequency of available observation is
observation every 2 days. every 12 days.

10 observations are used for the 242 observations are used for the
synthetic cases. synthetic cases.

z b radial and 5 vertical z 11x11 radial and 11x11 vertical



OVERVIEW OF DA

VOLCANIC DA: HOW TO?
BEYOND ERUPTION FORECASTING

TOWARDS REAL-TIME FORECASTING
CONCLUSIONS AND PERSPECTIVES

JOINT ASSIMILATION OF GNSS AND INSAR: SYNTHETIC CASES

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

AP

s

Overpressure, MPa

1601

1201

Shallow Reservoir

- <joint GNSS and InSAR>
- - True Value

o0
o

40( |

1 2
Time, years

Deep Reservoir

- <joint GNSS and InSAR>
- - True Value
60;
Q.
<
40
]
(ol
=
)
5
<
a n 20t
N9
) -
(X
| -
Q
>
o Inset 2
Op
o
<
_20
3 0 1 2 3

Time, years

Overpressure, MPa

Overpressure, MPa

(o))
o
T

N
=

200 /

0.2 0.4 0.6
Time, years

0.2 0.4 0.6
Time, years

Every time InSAR is introduced, the trajectory of the estimation is

forced towards its true behaviour.



km3 y-1

OVERVIEW OF DA VOLCANIC DA: HOW TO? TOWARDS REAL-TIME FORECASTING
BEYOND ERUPTION FORECASTING CONCLUSIONS AND PERSPECTIVES

JOINT ASSIMILATION OF GNSS AND INSAR: SYNTHETIC CASES

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

4500

4000
3500}
3000}
2500}

2000

- True Value

<joint GNSS and InSAR>

0.12

0.10}
0.08
0.06}
0.04}
0.02p
0.00

- True Value

<joint GNSS and InSAR> |

0.0

Time, years

EnKF works as well with parameter estimation using joint

assimilation of GNSS and InSAR!




OVERVIEW OF DA VOLCANIC DA: HOW TO? TOWARDS REAL-TIME FORECASTING
BEYOND ERUPTION FORECASTING CONCLUSIONS AND PERSPECTIVES

DATA ASSIMILATION V'S BAYESIAN INVERSION: SYNTHETIC CASES

7000
— <EnKF>
6000} ~—— <MCMC>
5000/ - - True Value
4000}
S
3000
2000 fiiiiib——————+-117—- 1 ... - - - - - - - 4V -
1000}
0
Bottom magma inflow rate Qjp
0.5¢
—  <EnKF>
0.4} — <MCMC>
- - True Value
— 0.3}
>
™M
& 0.2
~ |
0.1§
8 i
0.0 FT= - == ===
_01 I I I I |
0.0 0.5 1.0 1.5 2.0 2.5

Time, years

MCMC allows faster convergence to true values assuming that the
parameters remained constant in time




If inversion (like MCMC) is super awesome, then
why do we need data assimilation?



OVERVIEW OF DA VOLCANIC DA: HOW TO?

Inversion still has some limitations which include:

1. inefhiciency to incorporate data in real time,
2. model errors are often neglected during the process, and
3. difficulty in estimating time-dependent parameters



OVERVIEW OF DA VOLCANIC DA: HOW TO? TOWARDS REAL-TIME FORECASTING
BEYOND ERUPTION FORECASTING CONCLUSIONS AND PERSPECTIVES

Inversion still has some limitations which include:
1. inefhiciency to incorporate data in real time,

2. model errors are often neglected during the process, and
3. difficulty in estimating time-dependent parameters

[ propose data assimilation as a complimentary tool to

inversion in order to address these problems



OVERVIEW OF DA VOLCANIC DA: HOW TO? TOWARDS REAL-TIME FORECASTING

TOWARDS REAL-TIME ERUPTION FORECASTING

LEGEND:
.y Caldera

o Central volcano

j Fissure swarm

A\ GPS station

Grimsvotn volcanic system
@ Vatnajokull Icecap
@ On top of mantle plume

m Most active volcano in
Iceland (1998, 2004, 2011)




OVERVIEW OF DA VOLCANIC DA: HOW TO? TOWARDS REAL-TIME FORECASTING
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TOWARDS REAL-TIME ERUPTION FORECASTING

2004 Eruption

100 :

-100-

-300-

-500

300+

200-

100+

| |
2004.0 2006.0 2008.0 2010.0 2012.0 2014.0 2016.0 2018.0
Time, years



OVERVIEW OF DA VOLCANIC DA: HOW T0? TOWARDS REAL-TIME FORECASTING
BEYOND ERUPTION FORECASTING CONCLUSIONS AND PERSPECTIVES

LET'S DO SOME “FORECASTING™ WITH THE 2004-2011 INTER-ERUPTIVE DATASET )

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

2004 Eruption 2011 Eruption

100 :
1

1
1
1
1
1
1
|
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
J

-100- Remember:

or )
AP,
}

| an

-300-

>
I

-500

uncertain parameter/s

300+ NS

200-
100+

Daily GNSS data is assimilated into the
0

350 two-chamber model to get X.

L o e
- M
— m —
o f
<
m .
\\
N
—
-
(=)
3
3
- = | .
%
[ ]
-L--_g————————— - .

250-

NO data, NO update.

1504

I | |
2004.0 2006.0 2008.0 2010.0
Time, years



TOWARDS REAL-TIME ERUPTION FORECASTING

When will the [shallow| magma chamber rupture?

Step-1: Define a failure overpressure, Pf
Step-2: Calculate probability of rupture
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TOWARDS REAL-TIME ERUPTION FORECASTING

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

- 300
N
o S
In forecasting the rupture of a 0 3
magma chamber, we can define a .
failure overpressure for the shallow 0.0 400 80.0
magma chamber.
BUT Prhas a large uncertainty. It
can vary depending on:
y p g . Pf — k TS
Mthe geometry of the reservoir L
at Grimsvotn: T, = 22 MPa
Alocal stress field ,
(Albino et al, 2010)

[t must be defined carefully per

. But in situ data are much lower
specific volcano.

Ts = 1 to 10 MPa
(Haimson and Rummel, 1982)



OVERVIEW OF DA VOLCANIC DA: HOW T0?
BEYOND ERUPTION FORECASTING

TOWARDS

i. Assigned Prvalue at t=0:

ii. Check at each step how many models
exceeded the initially assigned Ps
value:

iii. Compute for the probability of rupture

# of models that exceeded Ps
Total # of ensemble

Probability
of rupture

TOWARDS REAL-TIME FORECASTING
CONCLUSIONS AND PERSPECTIVES

REAL-TIME ERUPTION FORECASTING

00000000000000000000000000000000000000000000000000000000000

Step-2: Calculate probability of rupture

000000000000000000000000000000000000000000000

- 300
O
o
-150 S

. L0
0.0 40.0 80.0
Pf — k TS
at Grimsvotn: T, = 22 MPa
(Albino et al, 2010)

But in situ data are much lower

Ts = 1to 10 MPa
(Haimson and Rummel, 1982)



TOWARDS [NEAR] REAL-TIME ERUPTION FORECASTING

Shallow Overpressure, MPa
AP

Probability

Decimal Year
2006.0 2008.0 2010.0 2012.0
80.0 | | | | | | - |
| —EnKF :
|
—— Free-run )
60.0- !
|
|
: ——
400 - _____ 3839MPa- - - - - - - - - - - - - ---

20.0+

Grimsvotn Eruptio 1\

0.0
1.07
=l
ol
0.57 ~Ny
I
/
0 !
| | | | |
0 1000 2000 3000

Time-step, d



. | the day I stopped EnKF
- <

Shallow Overpressure, MPa
AP

Probability

Decimal Year

2006.0 2008.0 2010.0 2012.0
80.0 | | | | - |

| —EnKF :
|
— Free-run -
60.0- |
|
|
|
|

4001 o oo 3839MPa-============ -
1
1
5,
=1
20.0- g:
|
S
O
0.0 2
|
1.0- =
O,
=l
Ol
0.5 Ny
|

/
G |
| | L | |
0 1000 2000 3000

Time-step, d



. = ] the day I stopped EnKF

Shallow Overpressure, MPa
AP

Probability

Decimal Year

2006.0 2008.0 2010.0 2012.0
80.0-! ' | | | S

| —EnKF :
|
—— Free-run !
60.0- :
|
|
|
|

4004 o oo 38.39MPa- - - - - - - - —=—un == === =
1
- |
updated value from En 5:
)
20.0- ! ' §:
model trajectories g,
o Lo (@]
0.0 (predictions) >
! ~
1.0- B
U,
=l
ol
0.5 Ny
|

/
0 1
| | . | |
0 1000 2000 3000

Time-step, d



. = ] the day I stopped EnKF

Shallow Overpressure, MPa
AP

Probability

Decimal Year

2006.0 2008.0 2010.0 2012.0
80.0 | | | | | | - |

| —EnKF :
|
—— Free-run !
60.0- :
|
|
|
|

4004 o oo 38.39MPa- - - - - - - - —=—un == === =
1
- |
updated value from En 5:
)
20.0- ! ' §:
model trajectories g,
o Lo (@]
0.0 (predictions) >
! ~
1.0- B
U,
=l
ol
0.5 Ny
0 1

| | | | . | |
0 1000 2000 3000

Time-step, d




Shallow Overpressure, MPa
AP

Probability

80.0-
1 — EnKF

60.0-

40.0-

i)
20.0+ g-:
L,
S
O
0.0 2
|
1.07 =1
UI
I
ol
0.57 Ny
G | .
T T T : T T
0 1000 2000 3000

2006.0
|

Decimal Year
2008.0 2010.0
| 1

2012.0
|

— Free-run

- | e
=T
1

Time-step, d




Shallow Overpressure, MPa

Probability

AP,

Decimal Year

2006.0 2008.0 2010.0 2012.0
80.0 | | | | ; |

| —EnKF :
]
— Free-run -
60.0- :
1
1
1
|

400 _ _______ 3839MPa- === — - - — = e - - - - — — — |
1
1
S
=l
20.0- 3:
L,
S
O
0.0 E-
|
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—I
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- 9%
! |

O | | : |
0 1000 2000 3000

Time-step, d



Shallow Overpressure, MPa
AP

Probability

80.0

2006.0
|

2008.0
|

Decimal Year

2010.0
|

2012.0
|

60.0-

| —EnKF

— Free-run

40.0-

c
0
20.0- s-:
":I
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O
0.0 E-
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=l
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1
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Shallow Overpressure, MPa

Probability

AP,

80.0

2006.0
|

Decimal Year

2008.0 2010.0 2012.0
| | | | |

60.0-

| —EnKF
—— Free-run

40.0-

20.0+

- o Ew Em O Ew O e Ee O e e = as s am mw =w =m

~O
O
=)

o
brl

o

™~22%

\’“ Grimsvotn Eruption_

|
1000

2000
Time-step, d

|
3000



Shallow Overpressure, MPa
AP

Probability

*25+/-1%

80.0

Decimal Year
2006.0 2008.0 2010.0 2012.0
| | | | | | |

60.0-

| — EnKF

— Free-run

40.0-

S
20.0- g
0 £
O,
0.5 é:
| VOILA! 2011 ERUPTION!

0 ' *24%

0 1000 | 2000 | 3000
Time-step, d




OVERVIEW OF DA VOLCANIC DA: HOW T0? TOWARDS REAL-TIME FORECASTING

An eruption is imminent when the
probability of rupture reaches *25x1 %




LET'S GO BACK IN TIME AND SEE WHAT HAPPENS. .

Shallow Overpressure, MPa

Probability

AP,

80.0

2006.0 2008.0
| | |

Decimal Year

2010.0
|

2012.0
|

60.0-

| — EnKF

— Free-run

40.0-

20.0

N
ro L
(=)

O
o

(-

2011 Grimsvotn Eruption

| |
0 1000

Time-step, d

|
2000

|
3000



OVERVIEW OF DA VOLCANIC DA: HOW T0? TOWARDS REAL-TIME FORECASTING
BEYOND ERUPTION FORECASTING CONCLUSIONS AND PERSPECTIVES

LET'S FIND WHERE THE 0.25 PROBABILITY FALLS. ...

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

Decimal Year

2006.0 2008.0 2010.0 2012.0
80.0 | | | | | | | | | |
o —— EnKF :
|
% — Free-run -
g 600 |
2 |
N |
g- n_"’ ! /
|
g 4001 _______. 38.39MPa= = = = = = =~ =~ — == - - = - - -
5 [
_ |
2 g
o =
= 20.0 g—:
£ L,
(Vs - EI
: 2!
1.01 £
> O,
= I
= ol
2 0.5 N
_Q |
o
S 0.25 —
0 : forecast curve

| | |
0 1000 2000 3000

Time-step, d



OVERVIEW OF DA VOLCANIC DA: HOW T0? TOWARDS REAL-TIME FORECASTING
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LET'S FIND WHERE THE 0.25 PROBABILITY FALLS. ... ET VOILA!

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

Decimal Year

2006.0 2008.0 2010.0 2012.0
80.0 | | | | | | | | |
o — EnKF ‘
= Creerun <«—“Forecast|day” of eruption
v 60.0-
S
A _
g— Q_V’ /
=< 4001 ________ 3830 MPac = = = = — — — = = — = gi—
S —_—
2 S
r=u 20.0- g—
i - (1T
V) - c
S
0.0 2
1.0- E
- G
- -
E 0.5 N
o)
0 forecast curve
| | | | | |
0 1000 2000 3000

Time-step, d



Forecast Day

Time to

Probability of

Time-step, d

2357 2371
3200 T ' b 2430
- /(D) 8
- I = 1
c 'g 12
O 28004 1o P
- 1 E |S
o. i = 12 - 2400
T ' I £
%5 2400- S - st
— N
2000 - ;\ ------------ ~ ~- 2370

2

(B)

2500 4
>
1]
(]
C
.0
)
Q.
=
S
Ll
04
0.254 c (C)
.0
_ . §.
) : i,
S c
2 i} '8
- £
& . 'E
I V)
- I —
IR
0.0 T *ﬁ T T 1 T
0 500 1000 1500 2000 2500

Time-step, d

*2 wks before the
2011 eruption
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| KNOW WHAT YOU'RE THINKING.. ITS T00 GOOD T0 BE TRUE!

“Can the 25 £ 1% criterion work for the next eruptive cycle
(2011 post-eruptive dataset)?”

2011 Eruption

I I [
2012.0 2014.0 2016.0 2018.0
Time, years



OVERVIEW OF DA
BEYOND ERUPTION FORECASTING

DARN! THE ANSWER IS NO. ..

2011 Grimsvotn Eruption

VOLCANIC DA: HOW TO?

TOWARDS REAL-TIME FORECASTING
CONCLUSIONS AND PERSPECTIVES

Decimal Year

80.0] 20120 2014.0 20160  2018.0 2020.0
— |
© EnKF |
= —— Free-run :
v 600 |
2 .
4 1
S ") |
o Q. I
=g 400 ,
> [ ] [
o . *Just before the rifting
Ea 50,0 s |8  event, Grimsvotn
= . g .
< w4 could’ve erupted in
(V) cC ©
£ |18 2015
0.0 o | &
T
1.0 =
> N
= .
2 g5 :
Q I
© 0.5 —
a 0.18
0 —~ |
| | | | | |
0 1000 2000 3000

Time-step, d




BUT WAIT! DON'T LOSE HOPE! SOMETHING CHANGED. ..

km?3 yr?

DA
Inversion
Free-run
Data

= =] ~10 months before tHe rifting,

there was a drop in Qin

I 1
200 400 600 800 1000
Time-step, (d)



BUT WAIT! DON'T LOSE HOPE! SOMETHING CHANGED. ..

24 May 2011 16 Aug 2014

Decimal Year
2011.5 2012.0 2012.5 2013.0 2013.5 2014.0 2014.5

600 v 1 1 1 | | | |

(A)

300

500

count

H

o

o
|

0.041 0.047 0.053

200 —

Radial displacement, (mm)
g

—— DA

— |nversion
~——— Free-run
— Data

100

~10 months before the rifting,
there was a drop in Qin

0 2(l)0 4(l)0 G(I)O 800 1000

Time-step, (d)




24 May 2011 16 Aug 2014

Decimal Year
2011.5 2012.0 2012.5 2013.0 2013.5 2014.0 2014.5

600 v 1 1 1 | | | |

300 ( A)

500

count

H

o

o
|

0.041 0.047 0.053

200 —

Radial displacement, (mm)
g

—— DA

— |nversion
~——— Free-run
— Data

100 i .

0.016 km3 is missing!

0 200 400 600 800 1000
Time-step, (d)




OVERVIEW OF DA VOLCANIC DA: HOW TO? TOWARDS REAL-TIME FORECASTING

BEYOND ERUPTION FORECASTING CONCLUSIONS AND PERSPECTIVES
A A’
Grimsvotn Bardarbunga Holuhraun|
GEUM YAN _—
0 ~_GFUM ¢ ~_ DYNC =
[/ \j 2014-2015 Bardarbunga-Holuhraun

-10+ » Eruption
— P after Gudmundsson et al 2016
E s,B
=
=
Q
v
o

20+ pd 1) Lateral flow hypothesis

?‘?‘ Q,
Q, Non-homogenized
2) Shared magma magmatic lenses
304 reservoir hypothesis '
Pd,shared
0 1 I0 26 3IO 4IO 5IO
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Surge in magma supply at Bardarbunga + rifting event + gradual caldera collapse
= 6-month long eruption
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T0 SUMMARIZE ALL MY “BLA BLAS"....

@ Data assimilation shows great promise in addressing problems in
volcanology.
@ We can have a dynamic information on the volcanic system (e.g.
overpressures, magma inflow rate).
@ We can predict the timing of eruption given some assumptions on
threshold overpressure.
™ In addition to predicting volcanic eruptions, sequential assimilation of
geodetic data has a unique potential to give insights into volcanic
system roots.
» We are able to track the variation of magma supply rate and
evidence subsurface processes that occur between neighbouring

volcanoes—which have never been done before.



PERSPECTIVES

Volcanic data assimilation is still in its infancy—there are a lot more
things to do!
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PERSPECTIVES

Volcanic data assimilation is still in its infancy—there are a lot more
things to do!

“What is more likely to happen in the next decades is the
development of ensemble models, which make volcanic
forecasts that take account of both uncertainties and

nonlinear dynamics”

- Steve Sparks [2003]



Guatemala volcano alert too late to
save lives, officials admit

Sofia Menchu 6 MIN READ y f

EL RODEO, Guatemala (Reuters) - A communication breakdown between a disaster
agency and volcanologists in Guatemala delayed evacuations as gas and ash clouds

cascaded down the Fuego volcano last Sunday in its most violent eruption in four decades,

authorities have admitted.

https://www.reuters.com/

ess.co.uk ' : Twitter
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